添加Al或Ti对低碳钢超低氧焊接金属中铁素体形成的影响

Q4 Materials Science Welding International Pub Date : 2023-04-26 DOI:10.1080/09507116.2023.2203966
T. Mizuguchi, Masatoshi Sukemiya, Takumi Yoneji, Daichi Miyata
{"title":"添加Al或Ti对低碳钢超低氧焊接金属中铁素体形成的影响","authors":"T. Mizuguchi, Masatoshi Sukemiya, Takumi Yoneji, Daichi Miyata","doi":"10.1080/09507116.2023.2203966","DOIUrl":null,"url":null,"abstract":"Abstract Effect of Al or Ti addition on the ferrite formation in ultra-low oxygen (about a few tens ppm) weld metal of low carbon steels were investigated. A bead-on-plate welding experiments were performed with a Tungsten Inert Gas (TIG) welding system. The double nozzle was attached to the welding torch used, Ar was passed along the outer nozzle and He is added along the inner nozzle. Optical micrographs showed that primary ferrite appeared along prior austenite grain boundaries and that as the temperature is decreased ferrite side plates were grew into grain interior. Their formation positions were approached to the welding end as the decreasing Al and increasing Ti content. This change in ferrite formation position attributed on the ferrite formation temperature, which was assumed to increase as the decreasing Al and increasing Ti content. Energy dispersive X-ray spectroscopy analysis of inclusions showed that Al and Ti were mainly associated with 0, it was obvious that the inclusions in the steels were Al- and Ti- oxide inclusions. Al-oxide inclusions were not favourable acicular ferrite nucleation sites and the inclusions contributing to acicular ferrite formation were Ti-oxide ones. The number density of acicular ferrite was small. This indicated that acicular ferrite formation was suppressed because the number density of inclusions was low under the ultra-low oxygen welding condition.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Al or Ti addition on the ferrite formation in ultra-low oxygen weld metal of low carbon steel\",\"authors\":\"T. Mizuguchi, Masatoshi Sukemiya, Takumi Yoneji, Daichi Miyata\",\"doi\":\"10.1080/09507116.2023.2203966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Effect of Al or Ti addition on the ferrite formation in ultra-low oxygen (about a few tens ppm) weld metal of low carbon steels were investigated. A bead-on-plate welding experiments were performed with a Tungsten Inert Gas (TIG) welding system. The double nozzle was attached to the welding torch used, Ar was passed along the outer nozzle and He is added along the inner nozzle. Optical micrographs showed that primary ferrite appeared along prior austenite grain boundaries and that as the temperature is decreased ferrite side plates were grew into grain interior. Their formation positions were approached to the welding end as the decreasing Al and increasing Ti content. This change in ferrite formation position attributed on the ferrite formation temperature, which was assumed to increase as the decreasing Al and increasing Ti content. Energy dispersive X-ray spectroscopy analysis of inclusions showed that Al and Ti were mainly associated with 0, it was obvious that the inclusions in the steels were Al- and Ti- oxide inclusions. Al-oxide inclusions were not favourable acicular ferrite nucleation sites and the inclusions contributing to acicular ferrite formation were Ti-oxide ones. The number density of acicular ferrite was small. This indicated that acicular ferrite formation was suppressed because the number density of inclusions was low under the ultra-low oxygen welding condition.\",\"PeriodicalId\":23605,\"journal\":{\"name\":\"Welding International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09507116.2023.2203966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2203966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

研究了在低碳钢超低氧(约几十ppm)焊缝金属中添加Al或Ti对铁素体形成的影响。采用钨极惰性气体(TIG)焊接系统进行了板上焊道焊接实验。将双喷嘴连接到所使用的焊炬上,沿着外喷嘴传递Ar,并且沿着内喷嘴添加He。光学显微照片显示,初生铁素体沿着先前的奥氏体晶界出现,并且随着温度的降低,铁素体侧板生长到晶粒内部。随着Al含量的降低和Ti含量的增加,它们的形成位置接近焊接端。铁氧体形成位置的这种变化归因于铁氧体的形成温度,该温度被认为随着Al含量的减少和Ti含量的增加而增加。夹杂物的能量色散X射线光谱分析表明,Al和Ti主要与0有关,钢中的夹杂物明显为Al和Ti氧化物夹杂物。铝氧化物夹杂物不是有利的针状铁素体形核位置,而有助于针状铁氧体形成的夹杂物是钛氧化物夹杂物。针状铁素体的数量密度较小。这表明,在超低氧焊接条件下,由于夹杂物的数量密度较低,针状铁素体的形成受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Al or Ti addition on the ferrite formation in ultra-low oxygen weld metal of low carbon steel
Abstract Effect of Al or Ti addition on the ferrite formation in ultra-low oxygen (about a few tens ppm) weld metal of low carbon steels were investigated. A bead-on-plate welding experiments were performed with a Tungsten Inert Gas (TIG) welding system. The double nozzle was attached to the welding torch used, Ar was passed along the outer nozzle and He is added along the inner nozzle. Optical micrographs showed that primary ferrite appeared along prior austenite grain boundaries and that as the temperature is decreased ferrite side plates were grew into grain interior. Their formation positions were approached to the welding end as the decreasing Al and increasing Ti content. This change in ferrite formation position attributed on the ferrite formation temperature, which was assumed to increase as the decreasing Al and increasing Ti content. Energy dispersive X-ray spectroscopy analysis of inclusions showed that Al and Ti were mainly associated with 0, it was obvious that the inclusions in the steels were Al- and Ti- oxide inclusions. Al-oxide inclusions were not favourable acicular ferrite nucleation sites and the inclusions contributing to acicular ferrite formation were Ti-oxide ones. The number density of acicular ferrite was small. This indicated that acicular ferrite formation was suppressed because the number density of inclusions was low under the ultra-low oxygen welding condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding International
Welding International Materials Science-Metals and Alloys
CiteScore
0.70
自引率
0.00%
发文量
57
期刊介绍: Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.
期刊最新文献
Characteristics analysis and monitoring of friction stir welded dissimilar AA5083/AA6061-T6 using acoustic emission technique Edge detection in x-ray images of drill mast welds based on an improved Scharr operator Experimentally validated numerical prediction of laser welding induced distortions of Al alloy parts for railcar body by inherent strain method combined with thermo-elastic-plastic FE model Understanding of thermal behaviour in keyhole plasma arc welding process through numerical modelling–an overview Effect of post-weld heat treatment on mechanical and microstructural properties of high strength steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1