{"title":"扫描隧道显微镜/光谱学研究二维过渡金属二硫族化合物中晶界作用的最新进展","authors":"Hyo Won Kim","doi":"10.1186/s42649-023-00088-3","DOIUrl":null,"url":null,"abstract":"<div><p>Grain boundaries (GBs) are one- or two-dimensional (2D) defects, which are universal in crystals and play a crucial role in determining their mechanical, electrical, optical, and thermoelectric properties. In general, GBs tend to decrease electrical or thermal conductivity, and consequently degrade the performance of devices. However, the unusual characteristics of GBs have led to the production of a new class of memristors with 2D semiconducting transition metal dichalcogenides (TMDs) and the creation of conducting channels in 2D topological insulators. Therefore, understanding the nature of GBs and their influence on device applications emphasizes the importance of GB engineering for future 2D TMD-based devices. This review discusses recent progress made in the investigation of various roles of GBs in 2D TMDs characterized via scanning tunneling microscopy/spectroscopy.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-023-00088-3","citationCount":"0","resultStr":"{\"title\":\"Recent progress in the role of grain boundaries in two-dimensional transition metal dichalcogenides studied using scanning tunneling microscopy/spectroscopy\",\"authors\":\"Hyo Won Kim\",\"doi\":\"10.1186/s42649-023-00088-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grain boundaries (GBs) are one- or two-dimensional (2D) defects, which are universal in crystals and play a crucial role in determining their mechanical, electrical, optical, and thermoelectric properties. In general, GBs tend to decrease electrical or thermal conductivity, and consequently degrade the performance of devices. However, the unusual characteristics of GBs have led to the production of a new class of memristors with 2D semiconducting transition metal dichalcogenides (TMDs) and the creation of conducting channels in 2D topological insulators. Therefore, understanding the nature of GBs and their influence on device applications emphasizes the importance of GB engineering for future 2D TMD-based devices. This review discusses recent progress made in the investigation of various roles of GBs in 2D TMDs characterized via scanning tunneling microscopy/spectroscopy.</p></div>\",\"PeriodicalId\":470,\"journal\":{\"name\":\"Applied Microscopy\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-023-00088-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42649-023-00088-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-023-00088-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Recent progress in the role of grain boundaries in two-dimensional transition metal dichalcogenides studied using scanning tunneling microscopy/spectroscopy
Grain boundaries (GBs) are one- or two-dimensional (2D) defects, which are universal in crystals and play a crucial role in determining their mechanical, electrical, optical, and thermoelectric properties. In general, GBs tend to decrease electrical or thermal conductivity, and consequently degrade the performance of devices. However, the unusual characteristics of GBs have led to the production of a new class of memristors with 2D semiconducting transition metal dichalcogenides (TMDs) and the creation of conducting channels in 2D topological insulators. Therefore, understanding the nature of GBs and their influence on device applications emphasizes the importance of GB engineering for future 2D TMD-based devices. This review discusses recent progress made in the investigation of various roles of GBs in 2D TMDs characterized via scanning tunneling microscopy/spectroscopy.
Applied MicroscopyImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍:
Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.