小麦基因型评价:基因型×环境交互作用和GGE双位点分析

IF 1 4区 农林科学 Q3 AGRONOMY Turkish Journal of Field Crops Pub Date : 2022-06-17 DOI:10.17557/tjfc.1081513
H. Güngör, M. Çakır, Z. Dumlupinar
{"title":"小麦基因型评价:基因型×环境交互作用和GGE双位点分析","authors":"H. Güngör, M. Çakır, Z. Dumlupinar","doi":"10.17557/tjfc.1081513","DOIUrl":null,"url":null,"abstract":"This research was carried out to evaluate the grain yield, yield traits and some quality characteristics of 18 bread wheat genotypes in seven different locations in Thrace region using principal component analysis and genotype + genotype × environment interaction (GGE) biplot analysis to determine the genotypes with high yield and desired quality characteristics during the 2016-2017 and 2017-2018 cropping years. The experiments were arranged in a randomized complete block design with four replications. Genotype, environment and genotype × environment interactions were found statistically significant at p≤0.01 level for all investigated traits. Mean values of the genotypes varied between 4841-6807 kg ha-1 for grain yield, 118.6-131.6 days for heading date, 80.4-104.7 cm for plant height, 7.7-10.4 cm for spike length, 16.4-20.3 for number of spikelets per spike, 16.4-20.3 number of grains per spike, 1.49-2.41 g grain weight per spike, 72-77.8 kg hl-1 for test weight and 36.6-45.3 g for thousand kernel weight. Principal component biplot analyzes explained the relationships between the investigated traits and genotypes at a ratio of 60.9%. It was observed that there was a positive and significant relationship between grain yield and test weight, a negative relationship with grain yield and spike length and grain weight per spike. GGE biplot analysis explained 82.65% of the relationship of genotype + genotype x environment for grain yield. According to the GGE biplot analysis two mega environments were determined and Lucilla and Glosa genotypes took place in the biggest mega environment consisted of four environments as superior genotypes.","PeriodicalId":23385,"journal":{"name":"Turkish Journal of Field Crops","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EVALUATION OF WHEAT GENOTYPES: GENOTYPE × ENVIRONMENT INTERACTION AND GGE BIPLOT ANALYSIS\",\"authors\":\"H. Güngör, M. Çakır, Z. Dumlupinar\",\"doi\":\"10.17557/tjfc.1081513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was carried out to evaluate the grain yield, yield traits and some quality characteristics of 18 bread wheat genotypes in seven different locations in Thrace region using principal component analysis and genotype + genotype × environment interaction (GGE) biplot analysis to determine the genotypes with high yield and desired quality characteristics during the 2016-2017 and 2017-2018 cropping years. The experiments were arranged in a randomized complete block design with four replications. Genotype, environment and genotype × environment interactions were found statistically significant at p≤0.01 level for all investigated traits. Mean values of the genotypes varied between 4841-6807 kg ha-1 for grain yield, 118.6-131.6 days for heading date, 80.4-104.7 cm for plant height, 7.7-10.4 cm for spike length, 16.4-20.3 for number of spikelets per spike, 16.4-20.3 number of grains per spike, 1.49-2.41 g grain weight per spike, 72-77.8 kg hl-1 for test weight and 36.6-45.3 g for thousand kernel weight. Principal component biplot analyzes explained the relationships between the investigated traits and genotypes at a ratio of 60.9%. It was observed that there was a positive and significant relationship between grain yield and test weight, a negative relationship with grain yield and spike length and grain weight per spike. GGE biplot analysis explained 82.65% of the relationship of genotype + genotype x environment for grain yield. According to the GGE biplot analysis two mega environments were determined and Lucilla and Glosa genotypes took place in the biggest mega environment consisted of four environments as superior genotypes.\",\"PeriodicalId\":23385,\"journal\":{\"name\":\"Turkish Journal of Field Crops\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Field Crops\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17557/tjfc.1081513\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Field Crops","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17557/tjfc.1081513","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在评价粮食产量,采用主成分分析和基因型+基因型×环境交互作用(GGE)双标分析法,对色雷斯地区7个不同地区18个面包小麦基因型的产量性状和部分品质特征进行了分析,以确定2016-2017和2017-2018种植年具有高产和所需品质特征的基因型。实验采用随机完全区组设计,共四次重复。基因型、环境和基因型×环境相互作用在所有研究性状的p≤0.01水平上具有统计学意义。基因型的平均值在产量4841-6807 kg ha-1、抽穗期118.6-131.6天、株高80.4-104.7 cm、穗长7.7-10.4 cm、穗小穗数16.4-2.3、穗粒数16.4-2.03、穗粒重1.49-2.41 g、试验重72-77.8 kg hl-1和千粒重36.6-45.3 g之间变化。主成分双标分析解释了所调查性状与基因型之间的关系,其比例为60.9%。结果表明,籽粒产量与试验重量呈正相关,与籽粒产量、穗长和穗重呈负相关。GGE双位点分析解释了82.65%的基因型+基因型x环境与粮食产量的关系。根据GGE双位点分析,确定了两个巨型环境,Lucilla和Glosa基因型发生在由四个环境组成的最大巨型环境中,作为优势基因型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EVALUATION OF WHEAT GENOTYPES: GENOTYPE × ENVIRONMENT INTERACTION AND GGE BIPLOT ANALYSIS
This research was carried out to evaluate the grain yield, yield traits and some quality characteristics of 18 bread wheat genotypes in seven different locations in Thrace region using principal component analysis and genotype + genotype × environment interaction (GGE) biplot analysis to determine the genotypes with high yield and desired quality characteristics during the 2016-2017 and 2017-2018 cropping years. The experiments were arranged in a randomized complete block design with four replications. Genotype, environment and genotype × environment interactions were found statistically significant at p≤0.01 level for all investigated traits. Mean values of the genotypes varied between 4841-6807 kg ha-1 for grain yield, 118.6-131.6 days for heading date, 80.4-104.7 cm for plant height, 7.7-10.4 cm for spike length, 16.4-20.3 for number of spikelets per spike, 16.4-20.3 number of grains per spike, 1.49-2.41 g grain weight per spike, 72-77.8 kg hl-1 for test weight and 36.6-45.3 g for thousand kernel weight. Principal component biplot analyzes explained the relationships between the investigated traits and genotypes at a ratio of 60.9%. It was observed that there was a positive and significant relationship between grain yield and test weight, a negative relationship with grain yield and spike length and grain weight per spike. GGE biplot analysis explained 82.65% of the relationship of genotype + genotype x environment for grain yield. According to the GGE biplot analysis two mega environments were determined and Lucilla and Glosa genotypes took place in the biggest mega environment consisted of four environments as superior genotypes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Information not localized
期刊最新文献
THE EFFECTS OF DIFFERENT SOWING TIMES ON THE PHENOLOGICAL CHARACTERISTICS AND SEED YIELD OF THE PEA Observation of morphological, agronomic, and quality traits of the two alfalfa developed populations under rainfed conditions in semiarid regions GRAIN - BRAN QUALITY PARAMETERS and AGRONOMIC TRAITS of BREAD WHEAT CULTIVARS ASSESSING THE IMPACT OF CUTTING SEASON ON THE YIELD, ESSENTIAL OIL, AND COMPOSITION OF SPEARMINT CULTIVARS Interaction of Nitrogen and Plant Density on Growth and Yield of Two Quinoas (Chenopodium quinoa Willd.) Cultivars in Fars Province, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1