这是一个关于两种污染物的故事:氮和磷对城市湖泊缓解措施的反应存在明显差异

IF 1.5 Q4 WATER RESOURCES H2Open Journal Pub Date : 2022-09-02 DOI:10.2166/h2oj.2022.025
T. Cox, S. Wolosoff, Clifford Shum, Taraneh Nik-Khah
{"title":"这是一个关于两种污染物的故事:氮和磷对城市湖泊缓解措施的反应存在明显差异","authors":"T. Cox, S. Wolosoff, Clifford Shum, Taraneh Nik-Khah","doi":"10.2166/h2oj.2022.025","DOIUrl":null,"url":null,"abstract":"\n A constructed in-lake water quality mitigation system has proven itself to be effective at reducing Machado Lake phosphorus (P) levels, but ineffective at reducing nitrogen (N) levels. A combination of lake sediment dredging and capping, oxygenation, and a recirculating wetland have reduced lake water column P levels by nearly 50%, as compared to pre-project levels. Key to this result has been the dampening of seasonal P recycling in the sediments. A new lake water quality numerical model is presented, with applications to both pre- and post-project conditions. Model auditing has revealed very good results with respect to predicting mitigation impacts on P but poor results with respect to predicting the performance, or lack thereof, of the N mitigation system. Model sensitivity analyses indicate that the P reductions are primarily attributable to the sediment dredging and capping. Conversely, seasonal data, supported by modeling, suggest that the poor performance of the N mitigation system may be attributable to incomplete removal, or sequestration, of sediment N mass during dredging and/or a lack of impact from the oxygenation system. Future mitigation efforts for the lake should focus on reducing the substantial watershed nutrient loads to the lake and further in-lake P inactivation.","PeriodicalId":36060,"journal":{"name":"H2Open Journal","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tale of two contaminants: stark differences in the response of N and P to urban lake mitigation efforts\",\"authors\":\"T. Cox, S. Wolosoff, Clifford Shum, Taraneh Nik-Khah\",\"doi\":\"10.2166/h2oj.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A constructed in-lake water quality mitigation system has proven itself to be effective at reducing Machado Lake phosphorus (P) levels, but ineffective at reducing nitrogen (N) levels. A combination of lake sediment dredging and capping, oxygenation, and a recirculating wetland have reduced lake water column P levels by nearly 50%, as compared to pre-project levels. Key to this result has been the dampening of seasonal P recycling in the sediments. A new lake water quality numerical model is presented, with applications to both pre- and post-project conditions. Model auditing has revealed very good results with respect to predicting mitigation impacts on P but poor results with respect to predicting the performance, or lack thereof, of the N mitigation system. Model sensitivity analyses indicate that the P reductions are primarily attributable to the sediment dredging and capping. Conversely, seasonal data, supported by modeling, suggest that the poor performance of the N mitigation system may be attributable to incomplete removal, or sequestration, of sediment N mass during dredging and/or a lack of impact from the oxygenation system. Future mitigation efforts for the lake should focus on reducing the substantial watershed nutrient loads to the lake and further in-lake P inactivation.\",\"PeriodicalId\":36060,\"journal\":{\"name\":\"H2Open Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"H2Open Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/h2oj.2022.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"H2Open Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2022.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

已建成的湖内水质缓解系统已被证明在降低马查多湖磷(P)水平方面有效,但在降低氮(N)水平方面无效。与项目前的水平相比,湖泊沉积物疏浚和封盖、氧合和再循环湿地的结合使湖泊水柱P含量降低了近50%。这一结果的关键是沉积物中季节性磷循环的抑制。提出了一种新的湖泊水质数值模型,并将其应用于工程前后的条件。模型审计显示,在预测对磷的缓解影响方面,结果非常好,但在预测氮缓解系统的性能或缺乏性能方面,结果很差。模型敏感性分析表明,P的减少主要归因于泥沙疏浚和封盖。相反,由模型支持的季节性数据表明,氮减缓系统的不良性能可能归因于疏浚过程中沉积物N质量的不完全去除或隔离和/或缺乏氧合系统的影响。未来对湖泊的缓解工作应侧重于减少对湖泊的大量流域养分负荷和进一步的湖内磷失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tale of two contaminants: stark differences in the response of N and P to urban lake mitigation efforts
A constructed in-lake water quality mitigation system has proven itself to be effective at reducing Machado Lake phosphorus (P) levels, but ineffective at reducing nitrogen (N) levels. A combination of lake sediment dredging and capping, oxygenation, and a recirculating wetland have reduced lake water column P levels by nearly 50%, as compared to pre-project levels. Key to this result has been the dampening of seasonal P recycling in the sediments. A new lake water quality numerical model is presented, with applications to both pre- and post-project conditions. Model auditing has revealed very good results with respect to predicting mitigation impacts on P but poor results with respect to predicting the performance, or lack thereof, of the N mitigation system. Model sensitivity analyses indicate that the P reductions are primarily attributable to the sediment dredging and capping. Conversely, seasonal data, supported by modeling, suggest that the poor performance of the N mitigation system may be attributable to incomplete removal, or sequestration, of sediment N mass during dredging and/or a lack of impact from the oxygenation system. Future mitigation efforts for the lake should focus on reducing the substantial watershed nutrient loads to the lake and further in-lake P inactivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
H2Open Journal
H2Open Journal Environmental Science-Environmental Science (miscellaneous)
CiteScore
3.30
自引率
4.80%
发文量
47
审稿时长
24 weeks
期刊最新文献
Valorization of coffee husks for the sustainable removal of pharmaceuticals from aqueous solutions Urban wastewater management in Nepal: generation, treatment, engineering, and policy perspectives Assessment of concentrations of heavy metals in three leafy vegetables irrigated with wastewater in Hadnet district, Mekelle, Ethiopia Climate change and hydropower resilience in Nepal: an integrated modeling approach in the Madi River Basin Reactive media constructed wetland for phosphorus removal: assessing the opportunity and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1