人工神经网络在COVID-19疫苗运输中的双犹豫模糊实现

IF 3.6 3区 管理学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Organizational and End User Computing Pub Date : 2023-04-14 DOI:10.4018/joeuc.321169
Liang Zhou, Sadhna Chaudhary, M. K. Sharma, Arvind Dhaka, Amita Nandal
{"title":"人工神经网络在COVID-19疫苗运输中的双犹豫模糊实现","authors":"Liang Zhou, Sadhna Chaudhary, M. K. Sharma, Arvind Dhaka, Amita Nandal","doi":"10.4018/joeuc.321169","DOIUrl":null,"url":null,"abstract":"This article, in order to address impreciseness, initiated the notion of dual hesitant fermatean fuzzy sets (DHFFSs), as a generalization of the combination of dual hesitant fuzzy set (DHFS), dual hesitant Pythagorean fuzzy set (DHPFS) and Fermatean fuzzy set (FFS). The authors defined the fundamental set of operations for DHFFS. Additionally, the authors have also proposed two ranking functions and an accuracy function for the ordering of this novel set. In order to facilitate the pragmatic implementation of DHFFS in optimization, the authors formulated three types of transportation problem with dual hesitant Fermatean fuzzy (DHFF) parameters. To optimize the DHFF-TP, an algorithm was proposed with the help of one of the proposed ranking functions. Artificial neural network is also applied to the transportation problems in DHFF environment. A numerical example based on the transportation of COVID-19 vaccine with DHFF cost has also been carried out to validate out to validate our technique.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial Neural Network Dual Hesitant Fermatean Fuzzy Implementation in Transportation of COVID-19 Vaccine\",\"authors\":\"Liang Zhou, Sadhna Chaudhary, M. K. Sharma, Arvind Dhaka, Amita Nandal\",\"doi\":\"10.4018/joeuc.321169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article, in order to address impreciseness, initiated the notion of dual hesitant fermatean fuzzy sets (DHFFSs), as a generalization of the combination of dual hesitant fuzzy set (DHFS), dual hesitant Pythagorean fuzzy set (DHPFS) and Fermatean fuzzy set (FFS). The authors defined the fundamental set of operations for DHFFS. Additionally, the authors have also proposed two ranking functions and an accuracy function for the ordering of this novel set. In order to facilitate the pragmatic implementation of DHFFS in optimization, the authors formulated three types of transportation problem with dual hesitant Fermatean fuzzy (DHFF) parameters. To optimize the DHFF-TP, an algorithm was proposed with the help of one of the proposed ranking functions. Artificial neural network is also applied to the transportation problems in DHFF environment. A numerical example based on the transportation of COVID-19 vaccine with DHFF cost has also been carried out to validate out to validate our technique.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.321169\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.321169","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

为了解决不精确性问题,本文提出了对偶犹豫费马模糊集(DHFFS)的概念,作为对偶犹豫模糊集、对偶犹豫勾股模糊集和费马模糊集合组合的推广。作者定义了DHFFS的基本运算集。此外,作者还提出了两个排序函数和一个精度函数来排序这个新的集合。为了便于DHFFS在优化中的实际应用,作者提出了三类具有双重犹豫Fermatean模糊参数的运输问题。为了优化DHFF-TP,在所提出的排序函数之一的帮助下,提出了一种算法。人工神经网络也被应用于DHFF环境中的运输问题。还以新冠肺炎疫苗运输为例,以DHFF成本进行了数值验证,以验证我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network Dual Hesitant Fermatean Fuzzy Implementation in Transportation of COVID-19 Vaccine
This article, in order to address impreciseness, initiated the notion of dual hesitant fermatean fuzzy sets (DHFFSs), as a generalization of the combination of dual hesitant fuzzy set (DHFS), dual hesitant Pythagorean fuzzy set (DHPFS) and Fermatean fuzzy set (FFS). The authors defined the fundamental set of operations for DHFFS. Additionally, the authors have also proposed two ranking functions and an accuracy function for the ordering of this novel set. In order to facilitate the pragmatic implementation of DHFFS in optimization, the authors formulated three types of transportation problem with dual hesitant Fermatean fuzzy (DHFF) parameters. To optimize the DHFF-TP, an algorithm was proposed with the help of one of the proposed ranking functions. Artificial neural network is also applied to the transportation problems in DHFF environment. A numerical example based on the transportation of COVID-19 vaccine with DHFF cost has also been carried out to validate out to validate our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Organizational and End User Computing
Journal of Organizational and End User Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.00
自引率
9.20%
发文量
77
期刊介绍: The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.
期刊最新文献
Cross-Checking-Based Trademark Image Retrieval for Hot Company Detection E-Commerce Review Sentiment Analysis and Purchase Intention Prediction Based on Deep Learning Technology Financial Cycle With Text Information Embedding Based on LDA Measurement and Nowcasting Enhancing Innovation Management and Venture Capital Evaluation via Advanced Deep Learning Techniques Going Global in the Digital Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1