大型强子对撞机新物理搜索多变量分析方法的进展

Q1 Physics and Astronomy Reviews in Physics Pub Date : 2021-12-01 DOI:10.1016/j.revip.2021.100063
Anna Stakia , Tommaso Dorigo , Giovanni Banelli , Daniela Bortoletto , Alessandro Casa , Pablo de Castro , Christophe Delaere , Julien Donini , Livio Finos , Michele Gallinaro , Andrea Giammanco , Alexander Held , Fabricio Jiménez Morales , Grzegorz Kotkowski , Seng Pei Liew , Fabio Maltoni , Giovanna Menardi , Ioanna Papavergou , Alessia Saggio , Bruno Scarpa , Andreas Weiler
{"title":"大型强子对撞机新物理搜索多变量分析方法的进展","authors":"Anna Stakia ,&nbsp;Tommaso Dorigo ,&nbsp;Giovanni Banelli ,&nbsp;Daniela Bortoletto ,&nbsp;Alessandro Casa ,&nbsp;Pablo de Castro ,&nbsp;Christophe Delaere ,&nbsp;Julien Donini ,&nbsp;Livio Finos ,&nbsp;Michele Gallinaro ,&nbsp;Andrea Giammanco ,&nbsp;Alexander Held ,&nbsp;Fabricio Jiménez Morales ,&nbsp;Grzegorz Kotkowski ,&nbsp;Seng Pei Liew ,&nbsp;Fabio Maltoni ,&nbsp;Giovanna Menardi ,&nbsp;Ioanna Papavergou ,&nbsp;Alessia Saggio ,&nbsp;Bruno Scarpa ,&nbsp;Andreas Weiler","doi":"10.1016/j.revip.2021.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named “AMVA4NewPhysics” studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"7 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405428321000095/pdfft?md5=a17b8f3dedabe74d62b4b07fc2b9ffab&pid=1-s2.0-S2405428321000095-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider\",\"authors\":\"Anna Stakia ,&nbsp;Tommaso Dorigo ,&nbsp;Giovanni Banelli ,&nbsp;Daniela Bortoletto ,&nbsp;Alessandro Casa ,&nbsp;Pablo de Castro ,&nbsp;Christophe Delaere ,&nbsp;Julien Donini ,&nbsp;Livio Finos ,&nbsp;Michele Gallinaro ,&nbsp;Andrea Giammanco ,&nbsp;Alexander Held ,&nbsp;Fabricio Jiménez Morales ,&nbsp;Grzegorz Kotkowski ,&nbsp;Seng Pei Liew ,&nbsp;Fabio Maltoni ,&nbsp;Giovanna Menardi ,&nbsp;Ioanna Papavergou ,&nbsp;Alessia Saggio ,&nbsp;Bruno Scarpa ,&nbsp;Andreas Weiler\",\"doi\":\"10.1016/j.revip.2021.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named “AMVA4NewPhysics” studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.</p></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"7 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405428321000095/pdfft?md5=a17b8f3dedabe74d62b4b07fc2b9ffab&pid=1-s2.0-S2405428321000095-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428321000095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428321000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

在2015年至2019年期间,地平线2020资助的创新培训网络“AMVA4NewPhysics”的成员研究了先进的多元分析方法和统计学习工具在高能物理问题上的定制和应用,并开发了全新的问题。其中许多方法被成功地用于提高欧洲核子研究中心大型强子对撞机上ATLAS和CMS实验数据分析的灵敏度;其他几个仍处于测试阶段的项目,有望进一步提高基本物理参数测量的精度,并扩大对新现象的搜索范围。在本文中,介绍了研究和开发的最相关的新工具,并对其性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider

Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named “AMVA4NewPhysics” studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
期刊最新文献
Second-order nonlocal shifts of scattered wave-packets: What can be measured by Goos–Hänchen and Imbert–Fedorov effects? Plasmon-enhanced downshifting and downconversion: Fundamentals and applications in photovoltaics Localization in quantum field theory Deep generative models for detector signature simulation: A taxonomic review Magnetism on frustrated magnet system of Nd2B2O7 (B = Ru, Ir, Hf, Pb, Mo, and Zr): A systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1