浅盖离心尾矿和共混尾矿中原生湿地物种的生长和生存:中尺度温室研究

IF 1.5 4区 农林科学 Q4 SOIL SCIENCE Canadian Journal of Soil Science Pub Date : 2023-05-25 DOI:10.1139/cjss-2022-0129
Dani Degenhardt, A. Van Dongen, J. Hudson, N. Utting, Stefan G. Schreiber
{"title":"浅盖离心尾矿和共混尾矿中原生湿地物种的生长和生存:中尺度温室研究","authors":"Dani Degenhardt, A. Van Dongen, J. Hudson, N. Utting, Stefan G. Schreiber","doi":"10.1139/cjss-2022-0129","DOIUrl":null,"url":null,"abstract":"This three-year meso-scale greenhouse study used 55-gallon columns to evaluate the survival and growth of boreal wetland communities planted on centrifuge (CF) tailings and co-mixed (CM) tailings capped with different reclamation cover soil capping designs. The CF tailings were capped with a shallow layer (10 and 30 cm) of peat reclamation material (PRM) and the CM tailings were capped with a shallow layer (5 cm) of PRM above (15 or 35 cm) of reclamation subsoil (till). After three years, plant survival and growth on CF tailings showed significant improvement with a 10 cm PRM cap compared to the uncapped tailings, and plants growing on a 30 cm PRM cap outperformed those on the 10 cm PRM cap. Plant growth on CM tailings was significantly improved with a soil cover containing 5 cm PRM and at least 15 cm till. Among the seven native wetland species included in this study, the top performing species survival and above-ground biomass were Salix bebbiana, Scirpus microcarpus and Carex aquatilis.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth and survival of native wetland species in shallow capped centrifuged tailings and co-mixed tailings: A meso-scale greenhouse study\",\"authors\":\"Dani Degenhardt, A. Van Dongen, J. Hudson, N. Utting, Stefan G. Schreiber\",\"doi\":\"10.1139/cjss-2022-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This three-year meso-scale greenhouse study used 55-gallon columns to evaluate the survival and growth of boreal wetland communities planted on centrifuge (CF) tailings and co-mixed (CM) tailings capped with different reclamation cover soil capping designs. The CF tailings were capped with a shallow layer (10 and 30 cm) of peat reclamation material (PRM) and the CM tailings were capped with a shallow layer (5 cm) of PRM above (15 or 35 cm) of reclamation subsoil (till). After three years, plant survival and growth on CF tailings showed significant improvement with a 10 cm PRM cap compared to the uncapped tailings, and plants growing on a 30 cm PRM cap outperformed those on the 10 cm PRM cap. Plant growth on CM tailings was significantly improved with a soil cover containing 5 cm PRM and at least 15 cm till. Among the seven native wetland species included in this study, the top performing species survival and above-ground biomass were Salix bebbiana, Scirpus microcarpus and Carex aquatilis.\",\"PeriodicalId\":9384,\"journal\":{\"name\":\"Canadian Journal of Soil Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjss-2022-0129\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0129","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

本中尺度温室研究采用55加仑色谱柱对不同复盖土壤封顶设计的离心(CF)尾矿和共混(CM)尾矿上种植的北方湿地群落的生存和生长进行了评价。CF尾砂覆以10 cm和30 cm的浅泥炭复垦材料(PRM), cm尾砂覆以15 cm或35 cm的浅泥炭复垦底土(till)上5 cm的PRM。3年后,施用10 cm PRM盖层的CF尾矿上植物的生长和存活情况明显优于未施用PRM盖层,施用30 cm PRM盖层的植物生长情况优于施用10 cm PRM盖层。施用5 cm PRM盖层和至少15 cm耕层的cm尾矿上植物生长情况明显改善。在本研究的7种本土湿地物种中,柳(Salix bebbiana)、山菖蒲(Scirpus microcarpus)和水菖蒲(Carex aquatilis)的物种存活率和地上生物量表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth and survival of native wetland species in shallow capped centrifuged tailings and co-mixed tailings: A meso-scale greenhouse study
This three-year meso-scale greenhouse study used 55-gallon columns to evaluate the survival and growth of boreal wetland communities planted on centrifuge (CF) tailings and co-mixed (CM) tailings capped with different reclamation cover soil capping designs. The CF tailings were capped with a shallow layer (10 and 30 cm) of peat reclamation material (PRM) and the CM tailings were capped with a shallow layer (5 cm) of PRM above (15 or 35 cm) of reclamation subsoil (till). After three years, plant survival and growth on CF tailings showed significant improvement with a 10 cm PRM cap compared to the uncapped tailings, and plants growing on a 30 cm PRM cap outperformed those on the 10 cm PRM cap. Plant growth on CM tailings was significantly improved with a soil cover containing 5 cm PRM and at least 15 cm till. Among the seven native wetland species included in this study, the top performing species survival and above-ground biomass were Salix bebbiana, Scirpus microcarpus and Carex aquatilis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Soil Science
Canadian Journal of Soil Science 农林科学-土壤科学
CiteScore
2.90
自引率
11.80%
发文量
73
审稿时长
6.0 months
期刊介绍: The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.
期刊最新文献
How Does No-till Affect Soil-Profile Distribution of Roots? miyo wîcêhtowin “good relations”: reckoning with the relationship between Indigenous Peoples and soil science in Canada Analytical and Experimental Evaluation of Two-Layered Unsaturated Sand Bearing Capacity Impacts of conservation agriculture on soil C and N stocks and organic matter fractions: comparing commercial producer fields with a long-term small-plot experiment in Brown Chernozems of Saskatchewan Soil surface greenhouse gas emissions and hydro-physical properties as impacted by prairie cordgrass intercropped with kura clover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1