利用时间门控发光成像技术分离实验室生长的天然金刚石

IF 1.6 3区 地球科学 Q2 MINERALOGY Gems & Gemology Pub Date : 2020-08-01 DOI:10.5741/gems.56.2.220
C. McGuiness, Amber M. Wassell, P. Lanigan, S. Lynch
{"title":"利用时间门控发光成像技术分离实验室生长的天然金刚石","authors":"C. McGuiness, Amber M. Wassell, P. Lanigan, S. Lynch","doi":"10.5741/gems.56.2.220","DOIUrl":null,"url":null,"abstract":"GEMS & GEMOLOGY SUMMER 2020 The task of identifying a diamond will typically fall to a diamond appraiser, grader, or gemologist while preparing a grading certificate or appraisal. Whether a diamond is natural or lab-grown is a key factor in its market value and is of paramount importance to the gemologist. Many characteristics can be used to distinguish between natural and synthetic dia mond, but the inherent variability in the properties of natural and synthetic diamond can make such a task difficult. A useful and proven characteristic is the emission of luminescence when a diamond is excited by a source of ultraviolet energy. Typically, a gemologist would utilize an ultraviolet lamp with excitation wavelengths of 365 nm (long-wave ultraviolet, LWUV) or 254 nm (short-wave ultraviolet, SWUV), which correspond to the emission lines of a low-pressure mercury-vapor lamp. In this application, “fluorescence” would be observed during ultraviolet excitation, while “phosphorescence” may be observed when the excitation is removed. The De Beers DiamondView instrument (Spear and Welbourn, 1994; Welbourn et al., 1996) was designed to authenticate natural diamonds and synthetic diamonds. It allows a more sophisticated observation to be made by way of a shorter wavelength excitation of <225 nm corresponding to the primary absorption edge and only exciting around 1-micron depth of material, such that observed luminescence","PeriodicalId":12600,"journal":{"name":"Gems & Gemology","volume":"56 1","pages":"220-229"},"PeriodicalIF":1.6000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Separation of Natural Laboratory-Grown Diamond Using Time-Gated Luminescence Imaging\",\"authors\":\"C. McGuiness, Amber M. Wassell, P. Lanigan, S. Lynch\",\"doi\":\"10.5741/gems.56.2.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GEMS & GEMOLOGY SUMMER 2020 The task of identifying a diamond will typically fall to a diamond appraiser, grader, or gemologist while preparing a grading certificate or appraisal. Whether a diamond is natural or lab-grown is a key factor in its market value and is of paramount importance to the gemologist. Many characteristics can be used to distinguish between natural and synthetic dia mond, but the inherent variability in the properties of natural and synthetic diamond can make such a task difficult. A useful and proven characteristic is the emission of luminescence when a diamond is excited by a source of ultraviolet energy. Typically, a gemologist would utilize an ultraviolet lamp with excitation wavelengths of 365 nm (long-wave ultraviolet, LWUV) or 254 nm (short-wave ultraviolet, SWUV), which correspond to the emission lines of a low-pressure mercury-vapor lamp. In this application, “fluorescence” would be observed during ultraviolet excitation, while “phosphorescence” may be observed when the excitation is removed. The De Beers DiamondView instrument (Spear and Welbourn, 1994; Welbourn et al., 1996) was designed to authenticate natural diamonds and synthetic diamonds. It allows a more sophisticated observation to be made by way of a shorter wavelength excitation of <225 nm corresponding to the primary absorption edge and only exciting around 1-micron depth of material, such that observed luminescence\",\"PeriodicalId\":12600,\"journal\":{\"name\":\"Gems & Gemology\",\"volume\":\"56 1\",\"pages\":\"220-229\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gems & Gemology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5741/gems.56.2.220\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gems & Gemology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5741/gems.56.2.220","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 4

摘要

鉴定钻石的任务通常落在钻石估价师、分级师或宝石学家身上,同时准备分级证书或评估。一颗钻石是天然的还是实验室培育的,是决定其市场价值的一个关键因素,对宝石学家来说也是至关重要的。许多特征可以用来区分天然金刚石和合成金刚石,但天然金刚石和合成金刚石性质的内在可变性使这项任务变得困难。一个有用的和被证实的特性是当钻石被紫外线能量源激发时发出的发光。通常,宝石学家会使用激发波长为365纳米(长波紫外线,LWUV)或254纳米(短波紫外线,SWUV)的紫外线灯,这与低压汞蒸气灯的发射线相对应。在此应用中,在紫外线激发时可以观察到“荧光”,而在去除激发时可以观察到“磷光”。De Beers DiamondView仪器(Spear and Welbourn, 1994;Welbourn et al., 1996)设计用于鉴定天然钻石和合成钻石。它允许更复杂的观察,通过较短的波长激发<225 nm对应于主吸收边缘,只激发大约1微米深度的材料,这样观察到发光
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separation of Natural Laboratory-Grown Diamond Using Time-Gated Luminescence Imaging
GEMS & GEMOLOGY SUMMER 2020 The task of identifying a diamond will typically fall to a diamond appraiser, grader, or gemologist while preparing a grading certificate or appraisal. Whether a diamond is natural or lab-grown is a key factor in its market value and is of paramount importance to the gemologist. Many characteristics can be used to distinguish between natural and synthetic dia mond, but the inherent variability in the properties of natural and synthetic diamond can make such a task difficult. A useful and proven characteristic is the emission of luminescence when a diamond is excited by a source of ultraviolet energy. Typically, a gemologist would utilize an ultraviolet lamp with excitation wavelengths of 365 nm (long-wave ultraviolet, LWUV) or 254 nm (short-wave ultraviolet, SWUV), which correspond to the emission lines of a low-pressure mercury-vapor lamp. In this application, “fluorescence” would be observed during ultraviolet excitation, while “phosphorescence” may be observed when the excitation is removed. The De Beers DiamondView instrument (Spear and Welbourn, 1994; Welbourn et al., 1996) was designed to authenticate natural diamonds and synthetic diamonds. It allows a more sophisticated observation to be made by way of a shorter wavelength excitation of <225 nm corresponding to the primary absorption edge and only exciting around 1-micron depth of material, such that observed luminescence
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gems & Gemology
Gems & Gemology 地学-矿物学
CiteScore
2.90
自引率
19.20%
发文量
10
期刊介绍: G&G publishes original articles on gem materials and research in gemology and related fields. Manuscript topics include, but are not limited to: Laboratory or field research; Comprehensive reviews of important topics in the field; Synthetics, imitations, and treatments; Trade issues; Recent discoveries or developments in gemology and related fields (e.g., new instruments or identification techniques, gem minerals for the collector, and lapidary techniques); Descriptions of notable gem materials and localities; Jewelry manufacturing arts, historical jewelry, and museum exhibits.
期刊最新文献
Iolite from the Thor-Odin Dome, British Columbia, Canada: Geology, Chemical Composition, Inclusions, and Cause of Chatoyancy Special Colors and Optical Effects of Oregon Sunstone: Absorption, Scattering, Pleochroism, and Color Zoning Etch Pits in Heliodor and Green Beryl from the Volyn Pegmatites, Northwest Ukraine: A Diagnostic Feature Yellow Sapphire: Natural, Heat-Treated, Beryllium-Diffused, and Synthetic Gemological Characterization of Peridot from Pyaung-Gaung in Mogok, Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1