{"title":"基于块Cholesky - LU的矩形矩阵QR分解","authors":"S. Le Borne","doi":"10.1002/nla.2497","DOIUrl":null,"url":null,"abstract":"The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A block Cholesky‐LU‐based QR factorization for rectangular matrices\",\"authors\":\"S. Le Borne\",\"doi\":\"10.1002/nla.2497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2497\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A block Cholesky‐LU‐based QR factorization for rectangular matrices
The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.