基于块Cholesky - LU的矩形矩阵QR分解

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2023-02-25 DOI:10.1002/nla.2497
S. Le Borne
{"title":"基于块Cholesky - LU的矩形矩阵QR分解","authors":"S. Le Borne","doi":"10.1002/nla.2497","DOIUrl":null,"url":null,"abstract":"The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A block Cholesky‐LU‐based QR factorization for rectangular matrices\",\"authors\":\"S. Le Borne\",\"doi\":\"10.1002/nla.2497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2497\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Householder方法提供了一种稳定的算法来计算一般矩阵的全QR分解。该算法的标准版本使用一系列正交反射将矩阵逐列转换为上三角形形式。为了利用(3级BLAS或结构化矩阵)块分割算法的计算优势,我们开发了一种用于QR分解的块算法。它基于Householder方法的一个众所周知的块版本,它递归地将矩阵按列划分为两个较小的矩阵。然而,我们没有继续递归到单个矩阵列,而是引入了一种新的方法来计算由几个矩阵列组成的更大块的隐式Householder表示中的QR因子,也就是说,我们从块级别而不是单个列开始递归。数值实验表明,这种新方法在多大程度上牺牲了Householder方法的稳定性来换取块方法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A block Cholesky‐LU‐based QR factorization for rectangular matrices
The Householder method provides a stable algorithm to compute the full QR factorization of a general matrix. The standard version of the algorithm uses a sequence of orthogonal reflections to transform the matrix into upper triangular form column by column. In order to exploit (level 3 BLAS or structured matrix) computational advantages for block‐partitioned algorithms, we develop a block algorithm for the QR factorization. It is based on a well‐known block version of the Householder method which recursively divides a matrix columnwise into two smaller matrices. However, instead of continuing the recursion down to single matrix columns, we introduce a novel way to compute the QR factors in implicit Householder representation for a larger block of several matrix columns, that is, we start the recursion at a block level instead of a single column. Numerical experiments illustrate to what extent the novel approach trades some of the stability of Householder's method for the computational efficiency of block methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1