K. Hughes, S. Balachandar, N. Kim, Chanyoung Park, R. Haftka, A. Diggs, D. Littrell, Jason Darr
{"title":"粒子爆炸驱动运动实验的法医学不确定性量化","authors":"K. Hughes, S. Balachandar, N. Kim, Chanyoung Park, R. Haftka, A. Diggs, D. Littrell, Jason Darr","doi":"10.1115/1.4043478","DOIUrl":null,"url":null,"abstract":"Six explosive experiments were performed in October 2014 and February of 2015 at the Munitions Directorate of the Air Force Research Laboratory with the goal of providing validation-quality data for particle drag models in the extreme regime of detonation. Three repeated single particle experiments and three particle array experiments were conducted. The time-varying position of the particles was captured within the explosive products by X-ray imaging. The contact front and shock locations were captured by high-speed photography to provide information on the early time gas behavior. Since these experiments were performed in the past and could not be repeated, we faced an interesting challenge of quantifying and reducing uncertainty through a detailed investigation of the experimental setup and operating conditions. This paper presents the results from these unique experiments, which can serve as benchmark for future modeling, and also our effort to reduce uncertainty, which we dub forensic uncertainty quantification (FUQ).","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4043478","citationCount":"7","resultStr":"{\"title\":\"Forensic Uncertainty Quantification for Experiments on the Explosively Driven Motion of Particles\",\"authors\":\"K. Hughes, S. Balachandar, N. Kim, Chanyoung Park, R. Haftka, A. Diggs, D. Littrell, Jason Darr\",\"doi\":\"10.1115/1.4043478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six explosive experiments were performed in October 2014 and February of 2015 at the Munitions Directorate of the Air Force Research Laboratory with the goal of providing validation-quality data for particle drag models in the extreme regime of detonation. Three repeated single particle experiments and three particle array experiments were conducted. The time-varying position of the particles was captured within the explosive products by X-ray imaging. The contact front and shock locations were captured by high-speed photography to provide information on the early time gas behavior. Since these experiments were performed in the past and could not be repeated, we faced an interesting challenge of quantifying and reducing uncertainty through a detailed investigation of the experimental setup and operating conditions. This paper presents the results from these unique experiments, which can serve as benchmark for future modeling, and also our effort to reduce uncertainty, which we dub forensic uncertainty quantification (FUQ).\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/1.4043478\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4043478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4043478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Forensic Uncertainty Quantification for Experiments on the Explosively Driven Motion of Particles
Six explosive experiments were performed in October 2014 and February of 2015 at the Munitions Directorate of the Air Force Research Laboratory with the goal of providing validation-quality data for particle drag models in the extreme regime of detonation. Three repeated single particle experiments and three particle array experiments were conducted. The time-varying position of the particles was captured within the explosive products by X-ray imaging. The contact front and shock locations were captured by high-speed photography to provide information on the early time gas behavior. Since these experiments were performed in the past and could not be repeated, we faced an interesting challenge of quantifying and reducing uncertainty through a detailed investigation of the experimental setup and operating conditions. This paper presents the results from these unique experiments, which can serve as benchmark for future modeling, and also our effort to reduce uncertainty, which we dub forensic uncertainty quantification (FUQ).