不同化学抛光工艺选择性激光熔融制备Ti6AL4V多孔支架的处理效果评价及机理分析

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2024-10-22 eCollection Date: 2024-10-01 DOI:10.1089/3dp.2023.0103
Wen Peng, Cai Cheng, Jinwang Hu, Yami Liu, Minmin Li, Changhui Song, Wenqing Shi
{"title":"不同化学抛光工艺选择性激光熔融制备Ti6AL4V多孔支架的处理效果评价及机理分析","authors":"Wen Peng, Cai Cheng, Jinwang Hu, Yami Liu, Minmin Li, Changhui Song, Wenqing Shi","doi":"10.1089/3dp.2023.0103","DOIUrl":null,"url":null,"abstract":"<p><p>The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average. The outer structure during the electrochemical polishing process showed an obvious treatment effect. However, the internal treatment depth and uniformity were significantly lower compared with the simple chemical polishing process, and the overall mechanical properties of the sample with the same porosity were inferior. The overall treatment effect, depth, and uniformity of the inner and outer structure of the sample using a dynamic chemical polishing process were significantly optimized, and the overall mechanical properties of the sample with the same porosity were superior to the other two methods. Furthermore, the main reasons for the nonuniform treatment effect between the inner and outer layers during the chemical polishing of porous scaffolds were observed to be related to the restricted exchange of etchant caused by the complex internal structure of porous scaffolds and the gas generated by the chemical reaction.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":"1746-1757"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683431/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Treatment Effect and Mechanism Analysis of Ti6AL4V Porous Scaffolds Prepared by Selective Laser Melting with Different Chemical Polishing Processes.\",\"authors\":\"Wen Peng, Cai Cheng, Jinwang Hu, Yami Liu, Minmin Li, Changhui Song, Wenqing Shi\",\"doi\":\"10.1089/3dp.2023.0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average. The outer structure during the electrochemical polishing process showed an obvious treatment effect. However, the internal treatment depth and uniformity were significantly lower compared with the simple chemical polishing process, and the overall mechanical properties of the sample with the same porosity were inferior. The overall treatment effect, depth, and uniformity of the inner and outer structure of the sample using a dynamic chemical polishing process were significantly optimized, and the overall mechanical properties of the sample with the same porosity were superior to the other two methods. Furthermore, the main reasons for the nonuniform treatment effect between the inner and outer layers during the chemical polishing of porous scaffolds were observed to be related to the restricted exchange of etchant caused by the complex internal structure of porous scaffolds and the gas generated by the chemical reaction.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\" \",\"pages\":\"1746-1757\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2023.0103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

采用选择性激光熔化技术制备的Ti6AL4V多孔支架表面残留大量未熔粉末是常见的问题。因此,本文在植入式医疗器械领域研究了三种不同的化学抛光工艺在不同抛光时间对小孔径支架材料表面状态、孔隙结构和力学性能的影响。结果表明,简单化学抛光工艺整体处理效果较差,多孔支架内部处理深度不足且不均匀,相同孔隙率的样品整体力学性能一般。在电化学抛光过程中,外部结构表现出明显的处理效果。但与简单化学抛光相比,内部处理深度和均匀性明显降低,相同孔隙率的样品整体力学性能较差。采用动态化学抛光工艺对样品的整体处理效果、深度和内外结构均匀性进行了显著优化,相同孔隙率下样品的整体力学性能优于其他两种方法。此外,多孔支架化学抛光过程中内层与外层处理效果不均匀的主要原因与多孔支架复杂的内部结构导致蚀刻剂交换受限以及化学反应产生的气体有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Treatment Effect and Mechanism Analysis of Ti6AL4V Porous Scaffolds Prepared by Selective Laser Melting with Different Chemical Polishing Processes.

The large amount of unfused powder that remains on the surface of Ti6AL4V porous scaffolds prepared by selective laser melting technology is a common problem. Therefore, this article investigated the effects of three different chemical polishing processes on the surface state, pore structure, and mechanical properties of small pore size scaffold materials at different polishing times in the field of implantable medical devices. The results show that the overall treatment effect of the simple chemical polishing process is poor, the internal treatment depth of porous support is insufficient and uneven, and the overall mechanical properties of the sample with the same porosity are average. The outer structure during the electrochemical polishing process showed an obvious treatment effect. However, the internal treatment depth and uniformity were significantly lower compared with the simple chemical polishing process, and the overall mechanical properties of the sample with the same porosity were inferior. The overall treatment effect, depth, and uniformity of the inner and outer structure of the sample using a dynamic chemical polishing process were significantly optimized, and the overall mechanical properties of the sample with the same porosity were superior to the other two methods. Furthermore, the main reasons for the nonuniform treatment effect between the inner and outer layers during the chemical polishing of porous scaffolds were observed to be related to the restricted exchange of etchant caused by the complex internal structure of porous scaffolds and the gas generated by the chemical reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
3D Bioprinting of Graphene Oxide-Incorporated Hydrogels for Neural Tissue Regeneration. Effective Spiral Laser Path for Minimizing Local Heating and Anisotropic Microstructures in Powder Bed Fusion Additive Manufacturing. Maximizing Mechanical Performance of 3D Printed Parts Through Process Parameter Optimization. Design Optimization of a 3D Microfluidic Channel System for Biomedical Applications. Parameter Optimization and Precision Control of Water-Soluble Support Cores for Hollow Composite Castings Fabricated by Slurry Microextrusion Direct Forming Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1