射频磁控共溅射a-SixCy薄膜的合成与表征

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2020-01-31 DOI:10.18311/jsst/2019/20961
S. Baskar, F. Gourbilleau, R. Pratibha Nalini
{"title":"射频磁控共溅射a-SixCy薄膜的合成与表征","authors":"S. Baskar, F. Gourbilleau, R. Pratibha Nalini","doi":"10.18311/jsst/2019/20961","DOIUrl":null,"url":null,"abstract":"Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Characterization of a-SixCy Thin Films Prepared by RF Magnetron Co-Sputtering Technique\",\"authors\":\"S. Baskar, F. Gourbilleau, R. Pratibha Nalini\",\"doi\":\"10.18311/jsst/2019/20961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/jsst/2019/20961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jsst/2019/20961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

Si-C基合金因其在电子和光学器件中的潜在应用而备受关注。本文通过溅射SiC获得了不同硅含量的a-SixCy薄膜;SiC和Si靶在不同沉积温度(Td)如200℃、350℃和500℃下的共溅射。使用常规热退火(CTA)和快速热退火(RTA)技术在各种退火温度(Ta)下对其进行退火。讨论了在样品制备的各个阶段中过量Si掺入和无意氧化的影响。利用椭圆偏振光谱、X射线衍射光谱(XRD)和傅里叶变换红外光谱(FTIR)研究了它们的结构和光学性质。折射率值(n1.95eV)在1.6至3.6之间变化,表明随着Td和Ta的增加,从多孔碳化硅转变为富硅碳化硅或碳氧化硅,这也得到了FTIR光谱的支持。随着Ta和过量硅的增加,在~950厘米至1100厘米之间出现吸收峰归因于Si-O,这是一种拉伸振动键,表明退火过程中Si富集和无意氧化。对工艺参数和相变的演变进行了详细的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of a-SixCy Thin Films Prepared by RF Magnetron Co-Sputtering Technique
Si-C based alloys have attracted much attention due to their potential applications in electronic and optical devices. In this paper, a-SixCy thin films with different Silicon (Si) content are obtained by sputtering of SiC; co-sputtering of SiC and Si targets at different deposition temperatures (Td) such as 200oC, 350oC and 500oC. It is annealed at various annealing temperature (Ta) using conventional thermal annealing (CTA) and Rapid Thermal Annealing (RTA) techniques. The effect of excess Si incorporation and the unintentional oxidation during various stages of sample preparation are discussed. Their structural and optical properties are investigated using spectroscopic ellipsometry, X-Ray Diffraction spectroscopy (XRD), and Fourier Transform Infrared spectroscopy (FTIR). The refractive index value (n1.95eV) varies between 1.6 to 3.6, suggesting the transition from porous silicon carbide to Si-rich silicon carbide or silicon oxycarbide upon increasing Td and Ta, which is also supported by the FTIR spectra. The emergence of absorption peak between ~950 cm−1 and 1100 cm−1 with the increase of Ta and excess silicon is attributed to Si-O a stretching vibration bond which is an indication of Si richness and unintentional oxidation during annealing. Detailed analysis on the process parameters and the evolution of phase transformations are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1