{"title":"多孔微结构对压力相关粘度流体流动阻力系数的影响","authors":"M. A. Zaytoon, S. Dajani, M. Hamdan","doi":"10.46300/9104.2021.15.15","DOIUrl":null,"url":null,"abstract":"Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of the Porous Microstructure on the Drag Coefficient in Flow of a Fluid with Pressure-Dependent Viscosity\",\"authors\":\"M. A. Zaytoon, S. Dajani, M. Hamdan\",\"doi\":\"10.46300/9104.2021.15.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work\",\"PeriodicalId\":39203,\"journal\":{\"name\":\"International Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/9104.2021.15.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2021.15.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Effects of the Porous Microstructure on the Drag Coefficient in Flow of a Fluid with Pressure-Dependent Viscosity
Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work