一个地区对电子零售商的吸引力有多大?为非大都市印度引入区域电子零售采用模式

IF 1.7 Q3 MANAGEMENT IIMB Management Review Pub Date : 2022-06-01 DOI:10.1016/j.iimb.2022.07.004
Shankhadeep Banerjee , Priya Seetharaman
{"title":"一个地区对电子零售商的吸引力有多大?为非大都市印度引入区域电子零售采用模式","authors":"Shankhadeep Banerjee ,&nbsp;Priya Seetharaman","doi":"10.1016/j.iimb.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop a basic regional e-tailing adoption model based on the “diffusion of innovations” (DOI) theory and the “ability-motivation-opportunity” (AMO) framework. We empirically test the model using ordinary least squares and Poisson regression on district-level e-tailing packages data collected from India Post. Further, we use a neural network model to classify districts into high/low e-tailing potential with 78% accuracy. Apart from its theoretical contribution, the adoption model can also be used by e-tailers to support their regional targeting decisions.</p></div>","PeriodicalId":46337,"journal":{"name":"IIMB Management Review","volume":"34 2","pages":"Pages 116-129"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0970389622000490/pdfft?md5=a3acca2db48882c9a859f4821608285f&pid=1-s2.0-S0970389622000490-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How attractive is a locale to e-tailers? Introducing a regional e-tailing adoption model for non-metropolitan India\",\"authors\":\"Shankhadeep Banerjee ,&nbsp;Priya Seetharaman\",\"doi\":\"10.1016/j.iimb.2022.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop a basic regional e-tailing adoption model based on the “diffusion of innovations” (DOI) theory and the “ability-motivation-opportunity” (AMO) framework. We empirically test the model using ordinary least squares and Poisson regression on district-level e-tailing packages data collected from India Post. Further, we use a neural network model to classify districts into high/low e-tailing potential with 78% accuracy. Apart from its theoretical contribution, the adoption model can also be used by e-tailers to support their regional targeting decisions.</p></div>\",\"PeriodicalId\":46337,\"journal\":{\"name\":\"IIMB Management Review\",\"volume\":\"34 2\",\"pages\":\"Pages 116-129\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0970389622000490/pdfft?md5=a3acca2db48882c9a859f4821608285f&pid=1-s2.0-S0970389622000490-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIMB Management Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0970389622000490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIMB Management Review","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0970389622000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

本文基于“创新扩散”(DOI)理论和“能力-动机-机会”(AMO)框架,构建了区域电子零售采用的基本模型。我们利用普通最小二乘法和泊松回归对印度邮政收集的地区级电子零售包裹数据进行了实证检验。此外,我们使用神经网络模型将地区划分为高/低电子零售潜力,准确率为78%。除了它的理论贡献,采用模型也可以被电子零售商用来支持他们的区域目标决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How attractive is a locale to e-tailers? Introducing a regional e-tailing adoption model for non-metropolitan India

In this paper, we develop a basic regional e-tailing adoption model based on the “diffusion of innovations” (DOI) theory and the “ability-motivation-opportunity” (AMO) framework. We empirically test the model using ordinary least squares and Poisson regression on district-level e-tailing packages data collected from India Post. Further, we use a neural network model to classify districts into high/low e-tailing potential with 78% accuracy. Apart from its theoretical contribution, the adoption model can also be used by e-tailers to support their regional targeting decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
31
审稿时长
68 days
期刊介绍: IIMB Management Review (IMR) is a quarterly journal brought out by the Indian Institute of Management Bangalore. Addressed to management practitioners, researchers and academics, IMR aims to engage rigorously with practices, concepts and ideas in the field of management, with an emphasis on providing managerial insights, in a reader friendly format. To this end IMR invites manuscripts that provide novel managerial insights in any of the core business functions. The manuscript should be rigorous, that is, the findings should be supported by either empirical data or a well-justified theoretical model, and well written. While these two requirements are necessary for acceptance, they do not guarantee acceptance. The sole criterion for publication is contribution to the extant management literature.Although all manuscripts are welcome, our special emphasis is on papers that focus on emerging economies throughout the world. Such papers may either improve our understanding of markets in such economies through novel analyses or build models by taking into account the special characteristics of such economies to provide guidance to managers.
期刊最新文献
Editorial Board Editorial Development of a composite index to measure environmental sustainability in the telecom sector: A comprehensive approach towards carbon emission reduction Becoming who I always was: The role of holding environments in maintaining identity narratives Classrooms vs screens: Learning outcomes from a business school
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1