Kennedy Wolfe, Tania M. Kenyon, Amelia Desbiens, Kimberley de la Motte, Peter J. Mumby
{"title":"珊瑚礁上隐秘生物多样性的等级驱动因素","authors":"Kennedy Wolfe, Tania M. Kenyon, Amelia Desbiens, Kimberley de la Motte, Peter J. Mumby","doi":"10.1002/ecm.1586","DOIUrl":null,"url":null,"abstract":"<p>Declines in habitat structural complexity have marked ecological outcomes, as currently observed in many of the world's ecosystems. Coral reefs have provided a model for such changes in marine ecosystems; still our understanding has been centered on corals and fishes at broad spatial scales when metazoan diversity on coral reefs is dominated by small cryptic taxa (herein: “cryptofauna”). Given the paucity of studies and high taxonomic complexity of the cryptofauna, both of which limit a priori hypotheses, we asked whether hierarchical structuring theory provides a compelling framework to impose order and quantify patterns. In general terms, we explored whether cryptic communities are sufficiently described by broad seascape parameters or limited by a set of processes operating at their distinctly nested microhabitat scale. To address this theory and gaps in knowledge for the cryptofauna, we characterized community structure in coral rubble, an eroded coral condition where biodiversity proliferates. Rubble was sampled along a depth and exposure gradient at Heron Island on the Great Barrier Reef, Australia, to parameterize environmental and morphological indicators of sessile taxa and motile cryptofauna communities. We used a hierarchical study framework from microhabitat to seascape scales, which were evaluated using nonstructured multivariate analyses and Bayesian structural equation modeling. While the nonstructured analyses showed the effects of seascape on the cryptobenthos and its community, this approach overlooked the finer hierarchical patterns in rubble ecology revealed only in the structured model. Seascape parameters (exposure and depth) influenced microhabitat complexity (i.e., rubble branchiness), which determined the cover of sessile organisms on rubble pieces, which shaped the motile cryptofauna community. Rubble is likely to be increasingly prevalent on coral reefs in the Anthropocene and is typically associated with low seascape-level complexity and reduced macrofaunal richness. Parallel with hierarchical structuring theory, we showed a similar response operating at the microhabitat scale whereby low rubble complexity (i.e., branchiness) reduced cryptobenthic structure, diversity and size spectra. In a future ocean, we expect there may be an initial increase in biodiversity and trophodynamic processes derived from branching rubble, but a delay in ecosystem-scale outcomes if coral, and thus rubble, generation and complexity is not sustained.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1586","citationCount":"3","resultStr":"{\"title\":\"Hierarchical drivers of cryptic biodiversity on coral reefs\",\"authors\":\"Kennedy Wolfe, Tania M. Kenyon, Amelia Desbiens, Kimberley de la Motte, Peter J. Mumby\",\"doi\":\"10.1002/ecm.1586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Declines in habitat structural complexity have marked ecological outcomes, as currently observed in many of the world's ecosystems. Coral reefs have provided a model for such changes in marine ecosystems; still our understanding has been centered on corals and fishes at broad spatial scales when metazoan diversity on coral reefs is dominated by small cryptic taxa (herein: “cryptofauna”). Given the paucity of studies and high taxonomic complexity of the cryptofauna, both of which limit a priori hypotheses, we asked whether hierarchical structuring theory provides a compelling framework to impose order and quantify patterns. In general terms, we explored whether cryptic communities are sufficiently described by broad seascape parameters or limited by a set of processes operating at their distinctly nested microhabitat scale. To address this theory and gaps in knowledge for the cryptofauna, we characterized community structure in coral rubble, an eroded coral condition where biodiversity proliferates. Rubble was sampled along a depth and exposure gradient at Heron Island on the Great Barrier Reef, Australia, to parameterize environmental and morphological indicators of sessile taxa and motile cryptofauna communities. We used a hierarchical study framework from microhabitat to seascape scales, which were evaluated using nonstructured multivariate analyses and Bayesian structural equation modeling. While the nonstructured analyses showed the effects of seascape on the cryptobenthos and its community, this approach overlooked the finer hierarchical patterns in rubble ecology revealed only in the structured model. Seascape parameters (exposure and depth) influenced microhabitat complexity (i.e., rubble branchiness), which determined the cover of sessile organisms on rubble pieces, which shaped the motile cryptofauna community. Rubble is likely to be increasingly prevalent on coral reefs in the Anthropocene and is typically associated with low seascape-level complexity and reduced macrofaunal richness. Parallel with hierarchical structuring theory, we showed a similar response operating at the microhabitat scale whereby low rubble complexity (i.e., branchiness) reduced cryptobenthic structure, diversity and size spectra. In a future ocean, we expect there may be an initial increase in biodiversity and trophodynamic processes derived from branching rubble, but a delay in ecosystem-scale outcomes if coral, and thus rubble, generation and complexity is not sustained.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 3\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1586\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1586\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1586","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Hierarchical drivers of cryptic biodiversity on coral reefs
Declines in habitat structural complexity have marked ecological outcomes, as currently observed in many of the world's ecosystems. Coral reefs have provided a model for such changes in marine ecosystems; still our understanding has been centered on corals and fishes at broad spatial scales when metazoan diversity on coral reefs is dominated by small cryptic taxa (herein: “cryptofauna”). Given the paucity of studies and high taxonomic complexity of the cryptofauna, both of which limit a priori hypotheses, we asked whether hierarchical structuring theory provides a compelling framework to impose order and quantify patterns. In general terms, we explored whether cryptic communities are sufficiently described by broad seascape parameters or limited by a set of processes operating at their distinctly nested microhabitat scale. To address this theory and gaps in knowledge for the cryptofauna, we characterized community structure in coral rubble, an eroded coral condition where biodiversity proliferates. Rubble was sampled along a depth and exposure gradient at Heron Island on the Great Barrier Reef, Australia, to parameterize environmental and morphological indicators of sessile taxa and motile cryptofauna communities. We used a hierarchical study framework from microhabitat to seascape scales, which were evaluated using nonstructured multivariate analyses and Bayesian structural equation modeling. While the nonstructured analyses showed the effects of seascape on the cryptobenthos and its community, this approach overlooked the finer hierarchical patterns in rubble ecology revealed only in the structured model. Seascape parameters (exposure and depth) influenced microhabitat complexity (i.e., rubble branchiness), which determined the cover of sessile organisms on rubble pieces, which shaped the motile cryptofauna community. Rubble is likely to be increasingly prevalent on coral reefs in the Anthropocene and is typically associated with low seascape-level complexity and reduced macrofaunal richness. Parallel with hierarchical structuring theory, we showed a similar response operating at the microhabitat scale whereby low rubble complexity (i.e., branchiness) reduced cryptobenthic structure, diversity and size spectra. In a future ocean, we expect there may be an initial increase in biodiversity and trophodynamic processes derived from branching rubble, but a delay in ecosystem-scale outcomes if coral, and thus rubble, generation and complexity is not sustained.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.