奥密克戎分析为CART细胞治疗耐药性提供了见解

Michelle J. Cox, S. Kenderian
{"title":"奥密克戎分析为CART细胞治疗耐药性提供了见解","authors":"Michelle J. Cox, S. Kenderian","doi":"10.20517/JTGG.2021.06","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor T (CART) cell therapy has revolutionized the treatment of relapsed/refractory B cell malignancies in recent years. Despite high initial response rates, durable response rates are low, and CART cell efficacy in solid tumors is very modest. Additionally, the overall success of CART cell therapy is limited by toxicities such as cytokine release syndrome and neurotoxicity. Decades of advancement in genome sequencing technology and bioinformatics have given us a better understanding of how cancer develops and evolves following treatments. This has resulted in a better understanding of patient response to cancer treatment on a molecular level. Resistance to CART cell therapy can be mediated by the cancer cells, the tumor microenvironment, or the patient’s T cells. In this review, we will outline lessons learned from multi-omics studies (1) to identify biomarkers of response or toxicity to CART cell therapy or (2) to develop biomarker-guided therapeutic interventions to overcome these limitations.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Omics analyses provide insights to CART cell therapy resistance\",\"authors\":\"Michelle J. Cox, S. Kenderian\",\"doi\":\"10.20517/JTGG.2021.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chimeric antigen receptor T (CART) cell therapy has revolutionized the treatment of relapsed/refractory B cell malignancies in recent years. Despite high initial response rates, durable response rates are low, and CART cell efficacy in solid tumors is very modest. Additionally, the overall success of CART cell therapy is limited by toxicities such as cytokine release syndrome and neurotoxicity. Decades of advancement in genome sequencing technology and bioinformatics have given us a better understanding of how cancer develops and evolves following treatments. This has resulted in a better understanding of patient response to cancer treatment on a molecular level. Resistance to CART cell therapy can be mediated by the cancer cells, the tumor microenvironment, or the patient’s T cells. In this review, we will outline lessons learned from multi-omics studies (1) to identify biomarkers of response or toxicity to CART cell therapy or (2) to develop biomarker-guided therapeutic interventions to overcome these limitations.\",\"PeriodicalId\":73999,\"journal\":{\"name\":\"Journal of translational genetics and genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of translational genetics and genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/JTGG.2021.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/JTGG.2021.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,嵌合抗原受体T(CART)细胞疗法彻底改变了复发/难治性B细胞恶性肿瘤的治疗。尽管初始反应率高,但持久反应率低,CART细胞在实体瘤中的疗效非常适中。此外,CART细胞治疗的总体成功受到毒性的限制,如细胞因子释放综合征和神经毒性。几十年来,基因组测序技术和生物信息学的进步使我们更好地了解了癌症在治疗后是如何发展和演变的。这使得人们在分子水平上更好地理解了患者对癌症治疗的反应。对CART细胞治疗的耐药性可以由癌症细胞、肿瘤微环境或患者的T细胞介导。在这篇综述中,我们将概述从多组学研究中吸取的经验教训:(1)确定对CART细胞治疗有反应或毒性的生物标志物,或(2)开发生物标志物指导的治疗干预措施来克服这些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Omics analyses provide insights to CART cell therapy resistance
Chimeric antigen receptor T (CART) cell therapy has revolutionized the treatment of relapsed/refractory B cell malignancies in recent years. Despite high initial response rates, durable response rates are low, and CART cell efficacy in solid tumors is very modest. Additionally, the overall success of CART cell therapy is limited by toxicities such as cytokine release syndrome and neurotoxicity. Decades of advancement in genome sequencing technology and bioinformatics have given us a better understanding of how cancer develops and evolves following treatments. This has resulted in a better understanding of patient response to cancer treatment on a molecular level. Resistance to CART cell therapy can be mediated by the cancer cells, the tumor microenvironment, or the patient’s T cells. In this review, we will outline lessons learned from multi-omics studies (1) to identify biomarkers of response or toxicity to CART cell therapy or (2) to develop biomarker-guided therapeutic interventions to overcome these limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Duchenne muscular dystrophy: diagnosis and perspective of treatment Challenges in determining the malignant potential of atypical neurofibromas (aNF) using histopathologic features and the potential need for CDKN2A/2B testing: a case report Genetics in the diagnosis and treatment of cardiovascular diseases Silent players, loud impact: unveiling the therapeutic potentials of LncRNAs Reduced protein kinase C delta in a high molecular weight complex in mitochondria and elevated creatine uptake into Barth syndrome B lymphoblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1