平稳过渡时市场比特币的管理自回归方法(STAR)

I. Pratama, I. W. Sumarjaya, NI Luh Putu Suciptawati
{"title":"平稳过渡时市场比特币的管理自回归方法(STAR)","authors":"I. Pratama, I. W. Sumarjaya, NI Luh Putu Suciptawati","doi":"10.24843/mtk.2022.v11.i02.p367","DOIUrl":null,"url":null,"abstract":"One of the spectacular advances in technology in the economic field is the cryptocurrency it created. The fluctuating price of Bitcoin, is widely used as a means of making profit. The time series forecasting method that can be used for the case of nonlinear time series data such as Bitcoin data is the smooth transition autoregressive (STAR) model. STAR is an extension of the autoregressive model for nonlinear time data. The purpose of this study is to obtain the results of forecasting Bitcoin price data for the next 2 two months using the STAR method. The data used in this study is Bitcoin daily price data from September 2017 to April 2021. To estimate the STAR model, several things that must be determined are the autoregressive model, transition variables, and transition functions. If the STAR model has been estimated, forecasting will be carried out for the next 2 months, which results in the forecast for the highest Bitcoin price falling on June 30, 2021 and the lowest Bitcoin price falling on May 1, 2021.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERAMALAN HARGA BITCOIN DENGAN METODE SMOOTH TRANSITION AUTOREGRESSIVE (STAR)\",\"authors\":\"I. Pratama, I. W. Sumarjaya, NI Luh Putu Suciptawati\",\"doi\":\"10.24843/mtk.2022.v11.i02.p367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the spectacular advances in technology in the economic field is the cryptocurrency it created. The fluctuating price of Bitcoin, is widely used as a means of making profit. The time series forecasting method that can be used for the case of nonlinear time series data such as Bitcoin data is the smooth transition autoregressive (STAR) model. STAR is an extension of the autoregressive model for nonlinear time data. The purpose of this study is to obtain the results of forecasting Bitcoin price data for the next 2 two months using the STAR method. The data used in this study is Bitcoin daily price data from September 2017 to April 2021. To estimate the STAR model, several things that must be determined are the autoregressive model, transition variables, and transition functions. If the STAR model has been estimated, forecasting will be carried out for the next 2 months, which results in the forecast for the highest Bitcoin price falling on June 30, 2021 and the lowest Bitcoin price falling on May 1, 2021.\",\"PeriodicalId\":11600,\"journal\":{\"name\":\"E-Jurnal Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/mtk.2022.v11.i02.p367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i02.p367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在经济领域,技术的惊人进步之一是它创造的加密货币。比特币的价格波动被广泛用作盈利手段。对于比特币等非线性时间序列数据,可以使用的时间序列预测方法是平滑过渡自回归(STAR)模型。STAR是非线性时间数据自回归模型的扩展。本研究的目的是利用STAR方法预测未来2个月的比特币价格数据。本研究使用的数据是2017年9月至2021年4月的比特币每日价格数据。要估计STAR模型,必须确定的几件事是自回归模型、转换变量和转换函数。如果STAR模型已经估算出来,接下来的2个月将进行预测,预测结果是2021年6月30日比特币价格最高,2021年5月1日比特币价格最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PERAMALAN HARGA BITCOIN DENGAN METODE SMOOTH TRANSITION AUTOREGRESSIVE (STAR)
One of the spectacular advances in technology in the economic field is the cryptocurrency it created. The fluctuating price of Bitcoin, is widely used as a means of making profit. The time series forecasting method that can be used for the case of nonlinear time series data such as Bitcoin data is the smooth transition autoregressive (STAR) model. STAR is an extension of the autoregressive model for nonlinear time data. The purpose of this study is to obtain the results of forecasting Bitcoin price data for the next 2 two months using the STAR method. The data used in this study is Bitcoin daily price data from September 2017 to April 2021. To estimate the STAR model, several things that must be determined are the autoregressive model, transition variables, and transition functions. If the STAR model has been estimated, forecasting will be carried out for the next 2 months, which results in the forecast for the highest Bitcoin price falling on June 30, 2021 and the lowest Bitcoin price falling on May 1, 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
期刊最新文献
The Potential Impact of Agouti Related Peptide and Asprosin on Metabolic Parameters and Eating Behavior in Attention Deficit Hyperactivity Disorder. PENGELOMPOKKAN KABUPATEN DI PROVINSI JAWA TENGAH BERDASARKAN KARAKTERISTIK IKLIM MENGGUNAKAN FUZZY CLUSTERING Perhitungan Premi Asuransi Menggunakan Model Select Table Pada Asuransi Joint Life PENERAPAN MODEL INVENTORI PROBABILISTIK FUZZY MULTIOBJEKTIF PADA SISTEM PERSEDIAAN BUAH SALAK KAUSALITAS ANTARA ANXIETY, SOCIAL PHOBIA TERHADAP PEMAIN VIDEO GAME
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1