陶瓷载体上PdO/ CuO TiO2光催化膜去除水中药物化合物的性能评价

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of Environmental Health Science and Engineering Pub Date : 2023-06-08 DOI:10.1007/s40201-023-00866-x
Samaneh Ghaderi, Roxana Taleb Lahafchi, Sona Jamshidi
{"title":"陶瓷载体上PdO/ CuO TiO2光催化膜去除水中药物化合物的性能评价","authors":"Samaneh Ghaderi,&nbsp;Roxana Taleb Lahafchi,&nbsp;Sona Jamshidi","doi":"10.1007/s40201-023-00866-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated photocatalytic degradation of pharmaceutical compound using CuO or PdO–TiO<sub>2</sub> membrane. The synthesized membranes were characterized by some techniques including X-ray powder diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). The structural properties confirmed that the photocatalytic membranes were successfully prepared on ceramic supports. The PdO-TiO<sub>2</sub> and CuO-TiO<sub>2</sub> membranes were employed as photocatalytic membranes to degrade metronidazole (MNZ) and diphenhydramine (DPH) in aqueous solutions, respectively. Some parameters affecting the photocatalytic reaction such as pH, initial concentration, and light source were also investigated. The maximum degradation for both pharmaceutical compounds was obtained at basic pH (pH = 10), low initial concentration (C<sub>0</sub> = 10 ppm) under UV irradiation. At high transmembrane pressure (ΔP = 3 bar), the flow rate across the membrane increased up 0.0078 and 0.0082 cc/s.cm<sup>2</sup> for CuO-TiO<sub>2</sub> and PdO-TiO<sub>2</sub> photocatalytic membrane respectively while not affected on degradation efficiency (DE). At the same condition operation (C<sub>0</sub> = 10 ppm, pH = 10, ΔP = 2 bar under UV irradiation), the MNZ and DPH degradation of the PdO-TiO<sub>2</sub> membrane was 94 and 95% respectively that relatively higher than the CuO-TiO<sub>2</sub> membrane. It is probably due to the lower energy band gap of PdO-TiO<sub>2</sub> (2.5 eV) than CuO-TiO<sub>2</sub> (2.7 eV). The membrane stability tests confirmed the high performance of the prepared membranes.\n</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00866-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of PdO/ CuO TiO2 photocatalytic membrane on ceramic support for removing pharmaceutical compounds from water\",\"authors\":\"Samaneh Ghaderi,&nbsp;Roxana Taleb Lahafchi,&nbsp;Sona Jamshidi\",\"doi\":\"10.1007/s40201-023-00866-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated photocatalytic degradation of pharmaceutical compound using CuO or PdO–TiO<sub>2</sub> membrane. The synthesized membranes were characterized by some techniques including X-ray powder diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). The structural properties confirmed that the photocatalytic membranes were successfully prepared on ceramic supports. The PdO-TiO<sub>2</sub> and CuO-TiO<sub>2</sub> membranes were employed as photocatalytic membranes to degrade metronidazole (MNZ) and diphenhydramine (DPH) in aqueous solutions, respectively. Some parameters affecting the photocatalytic reaction such as pH, initial concentration, and light source were also investigated. The maximum degradation for both pharmaceutical compounds was obtained at basic pH (pH = 10), low initial concentration (C<sub>0</sub> = 10 ppm) under UV irradiation. At high transmembrane pressure (ΔP = 3 bar), the flow rate across the membrane increased up 0.0078 and 0.0082 cc/s.cm<sup>2</sup> for CuO-TiO<sub>2</sub> and PdO-TiO<sub>2</sub> photocatalytic membrane respectively while not affected on degradation efficiency (DE). At the same condition operation (C<sub>0</sub> = 10 ppm, pH = 10, ΔP = 2 bar under UV irradiation), the MNZ and DPH degradation of the PdO-TiO<sub>2</sub> membrane was 94 and 95% respectively that relatively higher than the CuO-TiO<sub>2</sub> membrane. It is probably due to the lower energy band gap of PdO-TiO<sub>2</sub> (2.5 eV) than CuO-TiO<sub>2</sub> (2.7 eV). The membrane stability tests confirmed the high performance of the prepared membranes.\\n</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-023-00866-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-023-00866-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00866-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用CuO或PdO–TiO2膜对药物化合物进行了光催化降解。通过X射线粉末衍射(XRD)、动态光散射(DLS)、扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)等技术对合成的膜进行了表征。结构性能证实了在陶瓷载体上成功制备了光催化膜。采用PdO-TiO2和CuO-TiO2膜作为光催化膜,分别降解水溶液中的甲硝唑(MNZ)和苯海拉明(DPH)。还研究了影响光催化反应的一些参数,如pH、初始浓度和光源。在碱性pH(pH = 10) ,低初始浓度(C0 = 10ppm)。在高跨膜压力(ΔP = 3bar),对于CuO-TiO2和PdO-TiO2光催化膜,穿过膜的流速分别增加了0.0078和0.0082cc/s.cm2,而不影响降解效率(DE)。在相同条件下操作(C0 = 10 ppm,pH = 10,ΔP = 紫外线照射下2巴),PdO-TiO2膜的MNZ和DPH降解率分别为94%和95%,相对高于CuO-TiO2膜。这可能是由于PdO-TiO2(2.5eV)的能带隙低于CuO-TiO2(2.7eV)。膜稳定性测试证实了所制备的膜的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of PdO/ CuO TiO2 photocatalytic membrane on ceramic support for removing pharmaceutical compounds from water

This study investigated photocatalytic degradation of pharmaceutical compound using CuO or PdO–TiO2 membrane. The synthesized membranes were characterized by some techniques including X-ray powder diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). The structural properties confirmed that the photocatalytic membranes were successfully prepared on ceramic supports. The PdO-TiO2 and CuO-TiO2 membranes were employed as photocatalytic membranes to degrade metronidazole (MNZ) and diphenhydramine (DPH) in aqueous solutions, respectively. Some parameters affecting the photocatalytic reaction such as pH, initial concentration, and light source were also investigated. The maximum degradation for both pharmaceutical compounds was obtained at basic pH (pH = 10), low initial concentration (C0 = 10 ppm) under UV irradiation. At high transmembrane pressure (ΔP = 3 bar), the flow rate across the membrane increased up 0.0078 and 0.0082 cc/s.cm2 for CuO-TiO2 and PdO-TiO2 photocatalytic membrane respectively while not affected on degradation efficiency (DE). At the same condition operation (C0 = 10 ppm, pH = 10, ΔP = 2 bar under UV irradiation), the MNZ and DPH degradation of the PdO-TiO2 membrane was 94 and 95% respectively that relatively higher than the CuO-TiO2 membrane. It is probably due to the lower energy band gap of PdO-TiO2 (2.5 eV) than CuO-TiO2 (2.7 eV). The membrane stability tests confirmed the high performance of the prepared membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
期刊最新文献
Polystyrene nanoplastics: optimized removal using magnetic nano-adsorbent and toxicity assessment in zebrafish embryos The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review Production of biosurfactant by Bacillus megaterieum using agro-food wastes and its application in petroleum sludge oil recovery Investigations on the surface disinfection efficacy of far-UVC 222 nm germicidal irradiance device in a controlled environment and field test Determining the optimization of seawater concentrate discharge of coastal desalination plants into the marine environment, based on numerical modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1