{"title":"热弹性的第二梯度理论","authors":"D. Ieşan, R. Quintanilla","doi":"10.1007/s10659-023-10020-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a linear theory of thermoelasticity without energy dissipation, where the second gradient of displacement and the second gradient of the thermal displacement are included in the set of independent constitutive variables. In particular, in the case of rigid heat conductors the present theory leads to a fourth order equation for temperature. First, the basic equations of the second gradient theory of thermoelasticity are presented. The boundary conditions for thermal displacement are derived. The field equations for homogeneous and isotropic solids are established. Then, a uniqueness result for the basic boundary-initial-value problems is presented. An existence theorem is established for the first boundary value problem. The problem of a concentrated heat source is investigated using a solution of Cauchy-Kowalewski-Somigliana type.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Second Gradient Theory of Thermoelasticity\",\"authors\":\"D. Ieşan, R. Quintanilla\",\"doi\":\"10.1007/s10659-023-10020-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with a linear theory of thermoelasticity without energy dissipation, where the second gradient of displacement and the second gradient of the thermal displacement are included in the set of independent constitutive variables. In particular, in the case of rigid heat conductors the present theory leads to a fourth order equation for temperature. First, the basic equations of the second gradient theory of thermoelasticity are presented. The boundary conditions for thermal displacement are derived. The field equations for homogeneous and isotropic solids are established. Then, a uniqueness result for the basic boundary-initial-value problems is presented. An existence theorem is established for the first boundary value problem. The problem of a concentrated heat source is investigated using a solution of Cauchy-Kowalewski-Somigliana type.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-023-10020-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10020-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
This paper is concerned with a linear theory of thermoelasticity without energy dissipation, where the second gradient of displacement and the second gradient of the thermal displacement are included in the set of independent constitutive variables. In particular, in the case of rigid heat conductors the present theory leads to a fourth order equation for temperature. First, the basic equations of the second gradient theory of thermoelasticity are presented. The boundary conditions for thermal displacement are derived. The field equations for homogeneous and isotropic solids are established. Then, a uniqueness result for the basic boundary-initial-value problems is presented. An existence theorem is established for the first boundary value problem. The problem of a concentrated heat source is investigated using a solution of Cauchy-Kowalewski-Somigliana type.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.