跨语言韵律迁移TTS的对抗性和顺序性训练

Min-Kyung Kim, Joon‐Hyuk Chang
{"title":"跨语言韵律迁移TTS的对抗性和顺序性训练","authors":"Min-Kyung Kim, Joon‐Hyuk Chang","doi":"10.21437/interspeech.2022-865","DOIUrl":null,"url":null,"abstract":"This study presents a method for improving the performance of the text-to-speech (TTS) model by using three global speech-style representations: language, speaker, and prosody. Synthesizing different languages and prosody in the speaker’s voice regardless of their own language and prosody is possi-ble. To construct the embedding of each representation conditioned in the TTS model such that it is independent of the other representations, we propose an adversarial training method for the general architecture of TTS models. Furthermore, we introduce a sequential training method that includes rehearsal-based continual learning to train complex and small amounts of data without forgetting previously learned information. The experimental results show that the proposed method can generate good-quality speech and yield high similarity for speakers and prosody, even for representations that the speaker in the dataset does not contain.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"4556-4560"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adversarial and Sequential Training for Cross-lingual Prosody Transfer TTS\",\"authors\":\"Min-Kyung Kim, Joon‐Hyuk Chang\",\"doi\":\"10.21437/interspeech.2022-865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a method for improving the performance of the text-to-speech (TTS) model by using three global speech-style representations: language, speaker, and prosody. Synthesizing different languages and prosody in the speaker’s voice regardless of their own language and prosody is possi-ble. To construct the embedding of each representation conditioned in the TTS model such that it is independent of the other representations, we propose an adversarial training method for the general architecture of TTS models. Furthermore, we introduce a sequential training method that includes rehearsal-based continual learning to train complex and small amounts of data without forgetting previously learned information. The experimental results show that the proposed method can generate good-quality speech and yield high similarity for speakers and prosody, even for representations that the speaker in the dataset does not contain.\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"4556-4560\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种通过使用语言、说话者和韵律三种全局语音风格表示来提高文本到语音(TTS)模型性能的方法。在说话者的声音中综合不同的语言和韵律,而不管他们自己的语言和韵律是可能的。为了构建TTS模型中每个表征的嵌入,使其独立于其他表征,我们提出了一种针对TTS模型一般架构的对抗性训练方法。此外,我们引入了一种顺序训练方法,包括基于预演的持续学习,以训练复杂和少量的数据,而不会忘记先前学习的信息。实验结果表明,该方法可以生成高质量的语音,即使对于数据集中不包含的说话人表示,也可以产生高质量的说话人和韵律的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial and Sequential Training for Cross-lingual Prosody Transfer TTS
This study presents a method for improving the performance of the text-to-speech (TTS) model by using three global speech-style representations: language, speaker, and prosody. Synthesizing different languages and prosody in the speaker’s voice regardless of their own language and prosody is possi-ble. To construct the embedding of each representation conditioned in the TTS model such that it is independent of the other representations, we propose an adversarial training method for the general architecture of TTS models. Furthermore, we introduce a sequential training method that includes rehearsal-based continual learning to train complex and small amounts of data without forgetting previously learned information. The experimental results show that the proposed method can generate good-quality speech and yield high similarity for speakers and prosody, even for representations that the speaker in the dataset does not contain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering Nasal Coda Loss in the Chengdu Dialect of Mandarin: Evidence from RT-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1