J. Litoborska, T. Piotrowski, A. Jodda, J. Malicki
{"title":"骨髓移植患者放疗期间治疗计划和剂量输送方法的演变:综述","authors":"J. Litoborska, T. Piotrowski, A. Jodda, J. Malicki","doi":"10.2478/nuka-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract Background and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years. Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods. Results: The analysis of the evolution of radiotherapy methods shows how significantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verification methods, and the patient positioning can be checked by image guidance procedures. Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confirm the clinical value of new advanced techniques, clinical trials are required.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"65 1","pages":"19 - 30"},"PeriodicalIF":0.7000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review\",\"authors\":\"J. Litoborska, T. Piotrowski, A. Jodda, J. Malicki\",\"doi\":\"10.2478/nuka-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years. Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods. Results: The analysis of the evolution of radiotherapy methods shows how significantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verification methods, and the patient positioning can be checked by image guidance procedures. Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confirm the clinical value of new advanced techniques, clinical trials are required.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"65 1\",\"pages\":\"19 - 30\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2020-0003\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2020-0003","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review
Abstract Background and objectives: This study describes the treatment planning and dose delivery methods of radiotherapy for patients undergoing bone marrow transplantation. The analysis was carried out in the context of the evolution of these methods over the last 60 years. Materials and methods: A systematic literature search was carried out using the PubMed search engine. Overall, 90 relevant studies were included: 24 general studies, 10 describing isotopes usage, 24 related to conventional and 32 to advanced methods. Results: The analysis of the evolution of radiotherapy methods shows how significantly the precision of dose planning methods and its delivery have changed. The atypical positioning caused by geometrical requirements for applications of isotopes or conventional techniques has been replaced by positioning on a therapeutic couch, which allows a more precise setup of the patient that is necessary for an exact delivery of the planned dose. The dose can be fully optimized and calculated on tomographic images by algorithms implemented in planning systems. Optimization process allows to reduce doses in organs at risk. The accuracy between planned and delivered doses can be checked by pretreatment verification methods, and the patient positioning can be checked by image guidance procedures. Interpretation and conclusions: Current radiotherapy solutions allow a precise delivery of doses to the planning target volume while reducing doses to organs at risk. Nevertheless, it should be kept in mind that establishing radiotherapy as an important element of the whole therapeutic regimen resulted from the follow-up of patients treated by conventional techniques. To confirm the clinical value of new advanced techniques, clinical trials are required.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.