利用2型模糊系统优化生物打印骨矿化

A. Sedigh, M. Akbarzadeh-T., R. Tomlinson
{"title":"利用2型模糊系统优化生物打印骨矿化","authors":"A. Sedigh, M. Akbarzadeh-T., R. Tomlinson","doi":"10.3390/biophysica2040035","DOIUrl":null,"url":null,"abstract":"Bioprinting is an emerging tissue engineering method used to generate cell-laden scaffolds with high spatial resolution. Bioprinting parameters, such as pressure, nozzle size, and speed, highly influence the quality of the bioprinted construct. Moreover, cell suspension density and other critical biological parameters directly impact the biological function. Therefore, an approximation model that can be used to find the optimal bioprinting parameter settings for bioprinted constructs is highly desirable. Here, we propose a type-2 fuzzy model to handle the uncertainty and imprecision in the approximation model. Specifically, we focus on the biological parameters, such as the culture period, that can be used to maximize the output value (mineralization volume 21.8 mm3 with the same culture period of 21 days). We have also implemented a type-1 fuzzy model and compared the results with the proposed type-2 fuzzy model using two levels of uncertainty. We hypothesize that the type-2 fuzzy model may be preferred in biological systems due to the inherent vagueness and imprecision of the input data. Our numerical results confirm this hypothesis. More specifically, the type-2 fuzzy model with a high uncertainty boundary (30%) is superior to type-1 and type-2 fuzzy systems with low uncertainty boundaries in the overall output approximation error for bone bioprinting inputs.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Mineralization of Bioprinted Bone Utilizing Type-2 Fuzzy Systems\",\"authors\":\"A. Sedigh, M. Akbarzadeh-T., R. Tomlinson\",\"doi\":\"10.3390/biophysica2040035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioprinting is an emerging tissue engineering method used to generate cell-laden scaffolds with high spatial resolution. Bioprinting parameters, such as pressure, nozzle size, and speed, highly influence the quality of the bioprinted construct. Moreover, cell suspension density and other critical biological parameters directly impact the biological function. Therefore, an approximation model that can be used to find the optimal bioprinting parameter settings for bioprinted constructs is highly desirable. Here, we propose a type-2 fuzzy model to handle the uncertainty and imprecision in the approximation model. Specifically, we focus on the biological parameters, such as the culture period, that can be used to maximize the output value (mineralization volume 21.8 mm3 with the same culture period of 21 days). We have also implemented a type-1 fuzzy model and compared the results with the proposed type-2 fuzzy model using two levels of uncertainty. We hypothesize that the type-2 fuzzy model may be preferred in biological systems due to the inherent vagueness and imprecision of the input data. Our numerical results confirm this hypothesis. More specifically, the type-2 fuzzy model with a high uncertainty boundary (30%) is superior to type-1 and type-2 fuzzy systems with low uncertainty boundaries in the overall output approximation error for bone bioprinting inputs.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica2040035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2040035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生物打印是一种新兴的组织工程方法,用于生成具有高空间分辨率的载有细胞的支架。生物打印参数,如压力、喷嘴尺寸和速度,在很大程度上影响生物打印结构的质量。此外,细胞悬浮液密度和其他关键生物学参数直接影响生物功能。因此,可以用于找到生物打印构造的最佳生物打印参数设置的近似模型是非常理想的。在这里,我们提出了一个2型模糊模型来处理近似模型中的不确定性和不精确性。具体而言,我们关注可用于最大化产值的生物学参数,如培养期(矿化体积21.8mm3,相同培养期为21天)。我们还实现了一个1型模糊模型,并使用两个不确定性水平将结果与所提出的2型模糊模型进行了比较。我们假设,由于输入数据固有的模糊性和不精确性,2型模糊模型可能是生物系统中的首选模型。我们的数值结果证实了这一假设。更具体地说,在骨骼生物打印输入的总体输出近似误差方面,具有高不确定性边界(30%)的2型模糊模型优于具有低不确定性边界的1型和2型模糊系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Mineralization of Bioprinted Bone Utilizing Type-2 Fuzzy Systems
Bioprinting is an emerging tissue engineering method used to generate cell-laden scaffolds with high spatial resolution. Bioprinting parameters, such as pressure, nozzle size, and speed, highly influence the quality of the bioprinted construct. Moreover, cell suspension density and other critical biological parameters directly impact the biological function. Therefore, an approximation model that can be used to find the optimal bioprinting parameter settings for bioprinted constructs is highly desirable. Here, we propose a type-2 fuzzy model to handle the uncertainty and imprecision in the approximation model. Specifically, we focus on the biological parameters, such as the culture period, that can be used to maximize the output value (mineralization volume 21.8 mm3 with the same culture period of 21 days). We have also implemented a type-1 fuzzy model and compared the results with the proposed type-2 fuzzy model using two levels of uncertainty. We hypothesize that the type-2 fuzzy model may be preferred in biological systems due to the inherent vagueness and imprecision of the input data. Our numerical results confirm this hypothesis. More specifically, the type-2 fuzzy model with a high uncertainty boundary (30%) is superior to type-1 and type-2 fuzzy systems with low uncertainty boundaries in the overall output approximation error for bone bioprinting inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Melanin in the Retinal Epithelium and Magnetic Sensing: A Review of Current Studies. Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential Differential Scanning Calorimetry of Proteins and the Two-State Model: Comparison of Two Formulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1