{"title":"利用高分辨率扫描电镜图像分析了干细胞在纳米柱周期性阵列上的行为","authors":"Jihun Kang, Eun-Hye Kang, Young-Shik Yun, Seungmuk Ji, In-Sik Yun, Jong-Souk Yeo","doi":"10.1186/s42649-020-00046-3","DOIUrl":null,"url":null,"abstract":"<p>The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000?nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500-nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00046-3","citationCount":"0","resultStr":"{\"title\":\"Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images\",\"authors\":\"Jihun Kang, Eun-Hye Kang, Young-Shik Yun, Seungmuk Ji, In-Sik Yun, Jong-Souk Yeo\",\"doi\":\"10.1186/s42649-020-00046-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000?nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500-nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.</p>\",\"PeriodicalId\":470,\"journal\":{\"name\":\"Applied Microscopy\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42649-020-00046-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42649-020-00046-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-020-00046-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images
The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000?nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500-nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.
Applied MicroscopyImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍:
Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.