阴离子表面活性剂介质中硼掺杂金刚石电极表面伏安法测定抗疟药物阿莫地喹

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Macedonian Journal of Chemistry and Chemical Engineering Pub Date : 2022-12-30 DOI:10.20450/mjcce.2022.2565
Sara Kurdo Kamal, Yavuz Yardım
{"title":"阴离子表面活性剂介质中硼掺杂金刚石电极表面伏安法测定抗疟药物阿莫地喹","authors":"Sara Kurdo Kamal, Yavuz Yardım","doi":"10.20450/mjcce.2022.2565","DOIUrl":null,"url":null,"abstract":"In this study, the electrochemical determination of the amodiaquine (ADQ) drug was evaluated using an electrochemically pretreated boron-doped diamond (BDD) electrode due to the enhanced surface activity. The cyclic voltammogram results of ADQ were given as single reversible and diffusion-controlled peaks at +0.48 V for the oxidation peak and +0.05 V for the reduction peak (vs. Ag/AgCl) in Britton-Robinson (BR) buffer at pH 8.0. The peak potential and current signals of ADQ were evaluated at the surface of the BDD electrode using instrumental parameters to develop a simple method for ADQ detection. Also, the effect of an anionic surfactant, sodium dodecyl sulfate (SDS), on the adsorption applicability of the BDD electrode significantly increased the stripping voltammetric determination of ADQ. Under the optimal conditions chosen and employing square-wave adsorptive stripping voltammetry at the BDD electrode, ADQ was determined at + 0.34 V (vs. Ag/AgCl) at the open-circuit condition in BR buffer at pH 8.0 in the presence of 2·10–4 mol l–1 SDS. Furthermore, analytical parameters showed the linear relationship for ADQ determination in the concentration range of 0.1–20.0 μg ml–1 (2.2·10–7 – 4.3·10–5 mol l–1), with a detection limit of 0.03 μg ml–1 (6.5·10–8 mol l–1). The proposed approach can be applied to determine ADQ in water samples.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltammetric determination of anti-malarial drug amodiaquine at a boron-doped diamond electrode surface in an anionic surfactant media\",\"authors\":\"Sara Kurdo Kamal, Yavuz Yardım\",\"doi\":\"10.20450/mjcce.2022.2565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the electrochemical determination of the amodiaquine (ADQ) drug was evaluated using an electrochemically pretreated boron-doped diamond (BDD) electrode due to the enhanced surface activity. The cyclic voltammogram results of ADQ were given as single reversible and diffusion-controlled peaks at +0.48 V for the oxidation peak and +0.05 V for the reduction peak (vs. Ag/AgCl) in Britton-Robinson (BR) buffer at pH 8.0. The peak potential and current signals of ADQ were evaluated at the surface of the BDD electrode using instrumental parameters to develop a simple method for ADQ detection. Also, the effect of an anionic surfactant, sodium dodecyl sulfate (SDS), on the adsorption applicability of the BDD electrode significantly increased the stripping voltammetric determination of ADQ. Under the optimal conditions chosen and employing square-wave adsorptive stripping voltammetry at the BDD electrode, ADQ was determined at + 0.34 V (vs. Ag/AgCl) at the open-circuit condition in BR buffer at pH 8.0 in the presence of 2·10–4 mol l–1 SDS. Furthermore, analytical parameters showed the linear relationship for ADQ determination in the concentration range of 0.1–20.0 μg ml–1 (2.2·10–7 – 4.3·10–5 mol l–1), with a detection limit of 0.03 μg ml–1 (6.5·10–8 mol l–1). The proposed approach can be applied to determine ADQ in water samples.\",\"PeriodicalId\":18088,\"journal\":{\"name\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2022.2565\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2022.2565","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用经电化学预处理的硼掺杂金刚石(BDD)电极,对阿莫地喹(ADQ)药物的电化学测定进行了评价。ADQ的循环伏安结果显示,在pH 8.0的briton - robinson (BR)缓冲液中,氧化峰为+0.48 V,还原峰(相对于Ag/AgCl)为+0.05 V,为单可逆扩散控制峰。利用仪器参数对BDD电极表面的ADQ峰电位和电流信号进行了评价,建立了一种简单的ADQ检测方法。阴离子表面活性剂十二烷基硫酸钠(SDS)对BDD电极吸附适用性的影响显著提高了溶出伏安法测定ADQ的效果。在选择的最佳条件下,在BDD电极上采用方波吸附溶出伏安法,在+ 0.34 V (vs. Ag/AgCl)开路条件下,在BR缓冲液pH 8.0、2·10-4 mol l-1 SDS存在下测定ADQ。在0.1 ~ 20.0 μg ml-1(2.2·10-7 ~ 4.3·10-5 mol l-1)的浓度范围内,ADQ的检出限为0.03 μg ml-1(6.5·10-8 mol l-1)。该方法可用于水样中ADQ的测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voltammetric determination of anti-malarial drug amodiaquine at a boron-doped diamond electrode surface in an anionic surfactant media
In this study, the electrochemical determination of the amodiaquine (ADQ) drug was evaluated using an electrochemically pretreated boron-doped diamond (BDD) electrode due to the enhanced surface activity. The cyclic voltammogram results of ADQ were given as single reversible and diffusion-controlled peaks at +0.48 V for the oxidation peak and +0.05 V for the reduction peak (vs. Ag/AgCl) in Britton-Robinson (BR) buffer at pH 8.0. The peak potential and current signals of ADQ were evaluated at the surface of the BDD electrode using instrumental parameters to develop a simple method for ADQ detection. Also, the effect of an anionic surfactant, sodium dodecyl sulfate (SDS), on the adsorption applicability of the BDD electrode significantly increased the stripping voltammetric determination of ADQ. Under the optimal conditions chosen and employing square-wave adsorptive stripping voltammetry at the BDD electrode, ADQ was determined at + 0.34 V (vs. Ag/AgCl) at the open-circuit condition in BR buffer at pH 8.0 in the presence of 2·10–4 mol l–1 SDS. Furthermore, analytical parameters showed the linear relationship for ADQ determination in the concentration range of 0.1–20.0 μg ml–1 (2.2·10–7 – 4.3·10–5 mol l–1), with a detection limit of 0.03 μg ml–1 (6.5·10–8 mol l–1). The proposed approach can be applied to determine ADQ in water samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
20.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Macedonian Journal of Chemistry and Chemical Engineering (Mace­d. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes ori­ginal scientific papers, short commu­ni­ca­tions, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers pub­lished in the Journal are summarized in Che­mi­cal Abstracts.
期刊最新文献
Single-step, electrophoretically deposited hydroxyapatite/poly(vinyl alcohol)/chitosan/gentamicin coating for biomedical applications Polyol synthesis of Ag nanowires and biocidal activity of the obtained product Characterization of tea water extracts and their utilization for dyeing and functionalization of fabrics of different chemical compositions The electrochemical reduction of hydrogen peroxide on a palladium-amorphous carbon composite in an alkaline medium Microwave synthesis of novel chenodeoxycholic acid esters and comparative study of chromatographic behavior and lipophilicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1