{"title":"低雷诺数区域中下落液膜上的孤立波","authors":"Hollis Williams","doi":"10.1088/2633-1357/abafed","DOIUrl":null,"url":null,"abstract":"We study the problem of a thin liquid film falling down an inclined slope. We use a simplified model to study the evolution and morphology of the solitary waves on a thin film with a periodic forcing at the inlet. In recent work by Denner et al (2016 Phys. Rev. E 93, 033121), the regime for high Re was studied and results obtained on the geometry and dispersion of the waves. We wish to establish whether similar results are observed in a regime of smaller Re and examine quantities which can be compared with experiment, such as the maximum and minimum film height as a function of a rescaled Reynolds number which accounts for the inclination of the substrate. Our results show some evidence that h min collapses onto a single curve when plotted as a function of Re*, and approaches the absolute value of h min/h N = 0.375 in agreement with results obtained at higher Re. We also obtain a curve for d/λ which can be compared with the results reported in (Denner et al 2016 Phys. Rev. E 93, 033121).","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitary waves on falling liquid films in the low Reynolds number regime\",\"authors\":\"Hollis Williams\",\"doi\":\"10.1088/2633-1357/abafed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of a thin liquid film falling down an inclined slope. We use a simplified model to study the evolution and morphology of the solitary waves on a thin film with a periodic forcing at the inlet. In recent work by Denner et al (2016 Phys. Rev. E 93, 033121), the regime for high Re was studied and results obtained on the geometry and dispersion of the waves. We wish to establish whether similar results are observed in a regime of smaller Re and examine quantities which can be compared with experiment, such as the maximum and minimum film height as a function of a rescaled Reynolds number which accounts for the inclination of the substrate. Our results show some evidence that h min collapses onto a single curve when plotted as a function of Re*, and approaches the absolute value of h min/h N = 0.375 in agreement with results obtained at higher Re. We also obtain a curve for d/λ which can be compared with the results reported in (Denner et al 2016 Phys. Rev. E 93, 033121).\",\"PeriodicalId\":93771,\"journal\":{\"name\":\"IOP SciNotes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP SciNotes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-1357/abafed\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abafed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solitary waves on falling liquid films in the low Reynolds number regime
We study the problem of a thin liquid film falling down an inclined slope. We use a simplified model to study the evolution and morphology of the solitary waves on a thin film with a periodic forcing at the inlet. In recent work by Denner et al (2016 Phys. Rev. E 93, 033121), the regime for high Re was studied and results obtained on the geometry and dispersion of the waves. We wish to establish whether similar results are observed in a regime of smaller Re and examine quantities which can be compared with experiment, such as the maximum and minimum film height as a function of a rescaled Reynolds number which accounts for the inclination of the substrate. Our results show some evidence that h min collapses onto a single curve when plotted as a function of Re*, and approaches the absolute value of h min/h N = 0.375 in agreement with results obtained at higher Re. We also obtain a curve for d/λ which can be compared with the results reported in (Denner et al 2016 Phys. Rev. E 93, 033121).