双重抽样下总体均值的泊松回归比估计,并应用于Covid-19

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2022-05-03 DOI:10.1080/08898480.2022.2051988
H. Koç, Caner Tanış, T. Zaman
{"title":"双重抽样下总体均值的泊松回归比估计,并应用于Covid-19","authors":"H. Koç, Caner Tanış, T. Zaman","doi":"10.1080/08898480.2022.2051988","DOIUrl":null,"url":null,"abstract":"ABSTRACT Poisson regression is used to deal with count data. The Poisson regression ratio estimator of the population mean is extended from single to double sampling. This is made possible by the provision of the population mean of an auxiliary variable. The mean square errors of the proposed estimators are expressed up to the first order. Theoretical and numerical results demonstrate that the proposed double-sampling Poisson-regression ratio estimator has a lower mean square error than the double-ratio and the single-sampling estimator. For Covid-19, the minimum mean square errors yielded by the proposed estimator of the total number of cases are 0.095 cases per day and 67.8 cases, compared with 0.112 cases per day and 84.8 cases with the double-ratio estimator.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"29 1","pages":"226 - 240"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Poisson regression-ratio estimators of the population mean under double sampling, with application to Covid-19\",\"authors\":\"H. Koç, Caner Tanış, T. Zaman\",\"doi\":\"10.1080/08898480.2022.2051988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Poisson regression is used to deal with count data. The Poisson regression ratio estimator of the population mean is extended from single to double sampling. This is made possible by the provision of the population mean of an auxiliary variable. The mean square errors of the proposed estimators are expressed up to the first order. Theoretical and numerical results demonstrate that the proposed double-sampling Poisson-regression ratio estimator has a lower mean square error than the double-ratio and the single-sampling estimator. For Covid-19, the minimum mean square errors yielded by the proposed estimator of the total number of cases are 0.095 cases per day and 67.8 cases, compared with 0.112 cases per day and 84.8 cases with the double-ratio estimator.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"29 1\",\"pages\":\"226 - 240\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2022.2051988\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2022.2051988","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 5

摘要

用泊松回归处理计数数据。将总体均值的泊松回归比估计从单采样推广到双采样。这可以通过提供辅助变量的总体平均值来实现。所提出的估计量的均方误差表示到一阶。理论和数值结果表明,所提出的双采样泊松回归比估计比双采样和单采样估计具有更小的均方误差。对于新冠肺炎,该方法的最小均方误差分别为每天0.095例和67.8例,而双比方法的最小均方误差分别为每天0.112例和84.8例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poisson regression-ratio estimators of the population mean under double sampling, with application to Covid-19
ABSTRACT Poisson regression is used to deal with count data. The Poisson regression ratio estimator of the population mean is extended from single to double sampling. This is made possible by the provision of the population mean of an auxiliary variable. The mean square errors of the proposed estimators are expressed up to the first order. Theoretical and numerical results demonstrate that the proposed double-sampling Poisson-regression ratio estimator has a lower mean square error than the double-ratio and the single-sampling estimator. For Covid-19, the minimum mean square errors yielded by the proposed estimator of the total number of cases are 0.095 cases per day and 67.8 cases, compared with 0.112 cases per day and 84.8 cases with the double-ratio estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1