L. Vasyliev, M. Malich, D. Vasyliev, V. Katan, Zahar Rizo
{"title":"改进了用单轴压缩法计算圆柱形岩石强度的方法","authors":"L. Vasyliev, M. Malich, D. Vasyliev, V. Katan, Zahar Rizo","doi":"10.33271/mining17.01.043","DOIUrl":null,"url":null,"abstract":"Purpose is to improve analytical technique to calculate strength of cylindrical rock samples taking into consideration standard horizontal stresses. Methods. Mathematical modeling of cylindrical rock sample breakage under the truncated-wedge destruction was performed taking into consideration the standard horizontal stresses using four experimental characteristics (i.e. k being shear strength; fс and μ being contact and internal friction coefficients; and Е being elasticity modulus) as well as comparing the design strength with experimental data obtained in the process of uniaxial compression. Findings. The technique makes it possible to identify both maximum strength and residual strength of cylindrical rock samples using four indicators of properties which can be simply defined by experiment. Comparison of the analytical strength limits and experimental data, obtained in terms of uniaxial compression, supports the idea of high efficiency of the proposed technique. Originality. For the first time, analytical modeling of cylindrical rock sample breakage has been performed in terms of the truncated-wedge destruction taking into consideration the standard horizontal stresses as well as contact and internal friction parameters. Practical implications. The technique advantage is to apply promptly the calculation results in the context of industrial enterprises since their environment helps apply simple procedures to define indices of physiсomechanical characteristics of rocks for determination of stability of underground structures and reduction of energy consumption while disintegrating in open pits and mining and processing complexes.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving a technique to calculate strength of cylindrical rock samples in terms of uniaxial compression\",\"authors\":\"L. Vasyliev, M. Malich, D. Vasyliev, V. Katan, Zahar Rizo\",\"doi\":\"10.33271/mining17.01.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose is to improve analytical technique to calculate strength of cylindrical rock samples taking into consideration standard horizontal stresses. Methods. Mathematical modeling of cylindrical rock sample breakage under the truncated-wedge destruction was performed taking into consideration the standard horizontal stresses using four experimental characteristics (i.e. k being shear strength; fс and μ being contact and internal friction coefficients; and Е being elasticity modulus) as well as comparing the design strength with experimental data obtained in the process of uniaxial compression. Findings. The technique makes it possible to identify both maximum strength and residual strength of cylindrical rock samples using four indicators of properties which can be simply defined by experiment. Comparison of the analytical strength limits and experimental data, obtained in terms of uniaxial compression, supports the idea of high efficiency of the proposed technique. Originality. For the first time, analytical modeling of cylindrical rock sample breakage has been performed in terms of the truncated-wedge destruction taking into consideration the standard horizontal stresses as well as contact and internal friction parameters. Practical implications. The technique advantage is to apply promptly the calculation results in the context of industrial enterprises since their environment helps apply simple procedures to define indices of physiсomechanical characteristics of rocks for determination of stability of underground structures and reduction of energy consumption while disintegrating in open pits and mining and processing complexes.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.01.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.01.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Improving a technique to calculate strength of cylindrical rock samples in terms of uniaxial compression
Purpose is to improve analytical technique to calculate strength of cylindrical rock samples taking into consideration standard horizontal stresses. Methods. Mathematical modeling of cylindrical rock sample breakage under the truncated-wedge destruction was performed taking into consideration the standard horizontal stresses using four experimental characteristics (i.e. k being shear strength; fс and μ being contact and internal friction coefficients; and Е being elasticity modulus) as well as comparing the design strength with experimental data obtained in the process of uniaxial compression. Findings. The technique makes it possible to identify both maximum strength and residual strength of cylindrical rock samples using four indicators of properties which can be simply defined by experiment. Comparison of the analytical strength limits and experimental data, obtained in terms of uniaxial compression, supports the idea of high efficiency of the proposed technique. Originality. For the first time, analytical modeling of cylindrical rock sample breakage has been performed in terms of the truncated-wedge destruction taking into consideration the standard horizontal stresses as well as contact and internal friction parameters. Practical implications. The technique advantage is to apply promptly the calculation results in the context of industrial enterprises since their environment helps apply simple procedures to define indices of physiсomechanical characteristics of rocks for determination of stability of underground structures and reduction of energy consumption while disintegrating in open pits and mining and processing complexes.