基于影响链的气候风险与脆弱性评估研究进展

IF 3.3 Q2 ENVIRONMENTAL SCIENCES Frontiers in Climate Pub Date : 2023-05-31 DOI:10.3389/fclim.2023.1095631
L. Petutschnig, Erich Rome, Daniel Lückerath, Katharina Milde, Åsa Gerger Swartling, C. Aall, M. Meyer, G. Jordà, J. Gobert, Mathilda Englund, Karin André, Muriel Bour, Emmanuel M. N. A. N. Attoh, B. Dale, K. Renner, Adeline Cauchy, Saskia Reuschel, Florence Rudolf, M. Agulles, C. Melo-Aguilar, M. Zebisch, S. Kienberger
{"title":"基于影响链的气候风险与脆弱性评估研究进展","authors":"L. Petutschnig, Erich Rome, Daniel Lückerath, Katharina Milde, Åsa Gerger Swartling, C. Aall, M. Meyer, G. Jordà, J. Gobert, Mathilda Englund, Karin André, Muriel Bour, Emmanuel M. N. A. N. Attoh, B. Dale, K. Renner, Adeline Cauchy, Saskia Reuschel, Florence Rudolf, M. Agulles, C. Melo-Aguilar, M. Zebisch, S. Kienberger","doi":"10.3389/fclim.2023.1095631","DOIUrl":null,"url":null,"abstract":"As the climate crisis continues to worsen, there is an increasing demand for scientific evidence from Climate Risk and Vulnerability Assessments (CRVA). We present 12 methodological advancements to the Impact Chain-based CRVA (IC-based CRVA) framework, which combines participatory and data-driven approaches to identify and measure climate risks in complex socio-ecological systems. The advancements improve the framework along five axes, including the existing workflow, stakeholder engagement, uncertainty management, socio-economic scenario modeling, and transboundary climate risk examination. Eleven case studies were conducted and evaluated to produce these advancements. Our paper addresses two key research questions: (a) How can the IC-based CRVA framework be methodologically advanced to produce more accurate and insightful results? and (b) How effectively can the framework be applied in research and policy domains that it was not initially designed for? We propose methodological advancements to capture dynamics between risk factors, to resolve contradictory worldviews, and to maintain consistency between Impact Chains across policy scales. We suggest using scenario-planning techniques and integrating uncertainties via Probability Density Functions and Reverse Geometric Aggregation. Our research examines the applicability of IC-based CRVAs to address transboundary climate risks and integrating macro-economic models to reflect possible future socio-economic exposure. Our findings demonstrate that the modular structure of IC-based CRVA allows for the integration of various methodological advancements, and further advancements are possible to better assess complex climate risks and improve adaptation decision-making.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research advancements for impact chain based climate risk and vulnerability assessments\",\"authors\":\"L. Petutschnig, Erich Rome, Daniel Lückerath, Katharina Milde, Åsa Gerger Swartling, C. Aall, M. Meyer, G. Jordà, J. Gobert, Mathilda Englund, Karin André, Muriel Bour, Emmanuel M. N. A. N. Attoh, B. Dale, K. Renner, Adeline Cauchy, Saskia Reuschel, Florence Rudolf, M. Agulles, C. Melo-Aguilar, M. Zebisch, S. Kienberger\",\"doi\":\"10.3389/fclim.2023.1095631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the climate crisis continues to worsen, there is an increasing demand for scientific evidence from Climate Risk and Vulnerability Assessments (CRVA). We present 12 methodological advancements to the Impact Chain-based CRVA (IC-based CRVA) framework, which combines participatory and data-driven approaches to identify and measure climate risks in complex socio-ecological systems. The advancements improve the framework along five axes, including the existing workflow, stakeholder engagement, uncertainty management, socio-economic scenario modeling, and transboundary climate risk examination. Eleven case studies were conducted and evaluated to produce these advancements. Our paper addresses two key research questions: (a) How can the IC-based CRVA framework be methodologically advanced to produce more accurate and insightful results? and (b) How effectively can the framework be applied in research and policy domains that it was not initially designed for? We propose methodological advancements to capture dynamics between risk factors, to resolve contradictory worldviews, and to maintain consistency between Impact Chains across policy scales. We suggest using scenario-planning techniques and integrating uncertainties via Probability Density Functions and Reverse Geometric Aggregation. Our research examines the applicability of IC-based CRVAs to address transboundary climate risks and integrating macro-economic models to reflect possible future socio-economic exposure. Our findings demonstrate that the modular structure of IC-based CRVA allows for the integration of various methodological advancements, and further advancements are possible to better assess complex climate risks and improve adaptation decision-making.\",\"PeriodicalId\":33632,\"journal\":{\"name\":\"Frontiers in Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fclim.2023.1095631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fclim.2023.1095631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

随着气候危机的持续恶化,对气候风险和脆弱性评估(CRVA)的科学证据的需求越来越大。我们介绍了基于影响链的CRVA(基于IC的CRVA)框架的12个方法进步,该框架结合了参与性和数据驱动的方法,以识别和测量复杂社会生态系统中的气候风险。这些进步沿着五个轴改进了框架,包括现有的工作流程、利益相关者参与、不确定性管理、社会经济情景建模和跨界气候风险检查。为了取得这些进展,进行了11项案例研究并进行了评估。我们的论文解决了两个关键的研究问题:(a)如何在方法上推进基于IC的CRVA框架,以产生更准确、更有洞察力的结果?以及(b)该框架在最初没有设计用于研究和政策领域的情况下,如何有效地应用?我们建议在方法上取得进展,以捕捉风险因素之间的动态,解决相互矛盾的世界观,并保持政策范围内影响链之间的一致性。我们建议使用场景规划技术,并通过概率密度函数和反向几何聚合来整合不确定性。我们的研究考察了基于IC的CRVA在应对跨界气候风险和整合宏观经济模型以反映未来可能的社会经济风险方面的适用性。我们的研究结果表明,基于IC的CRVA的模块化结构允许整合各种方法学进步,进一步的进步有可能更好地评估复杂的气候风险并改进适应决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research advancements for impact chain based climate risk and vulnerability assessments
As the climate crisis continues to worsen, there is an increasing demand for scientific evidence from Climate Risk and Vulnerability Assessments (CRVA). We present 12 methodological advancements to the Impact Chain-based CRVA (IC-based CRVA) framework, which combines participatory and data-driven approaches to identify and measure climate risks in complex socio-ecological systems. The advancements improve the framework along five axes, including the existing workflow, stakeholder engagement, uncertainty management, socio-economic scenario modeling, and transboundary climate risk examination. Eleven case studies were conducted and evaluated to produce these advancements. Our paper addresses two key research questions: (a) How can the IC-based CRVA framework be methodologically advanced to produce more accurate and insightful results? and (b) How effectively can the framework be applied in research and policy domains that it was not initially designed for? We propose methodological advancements to capture dynamics between risk factors, to resolve contradictory worldviews, and to maintain consistency between Impact Chains across policy scales. We suggest using scenario-planning techniques and integrating uncertainties via Probability Density Functions and Reverse Geometric Aggregation. Our research examines the applicability of IC-based CRVAs to address transboundary climate risks and integrating macro-economic models to reflect possible future socio-economic exposure. Our findings demonstrate that the modular structure of IC-based CRVA allows for the integration of various methodological advancements, and further advancements are possible to better assess complex climate risks and improve adaptation decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Climate
Frontiers in Climate Environmental Science-Environmental Science (miscellaneous)
CiteScore
4.50
自引率
0.00%
发文量
233
审稿时长
15 weeks
期刊最新文献
Consumption-based emission inventories in Nordic municipalities—a quest to develop support for local climate action Transnational governance standards in ensuring sustainable development and operation of hydropower projects in transboundary basins Modeling the measurement of carbon dioxide removal: perspectives from the philosophy of measurement How well can we predict climate migration? A review of forecasting models Treatment of uncertainty in determining the UK's path to Net Zero
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1