{"title":"关于可导树","authors":"M. Hamidi, A. Saeid","doi":"10.22108/TOC.2019.113737.1601","DOIUrl":null,"url":null,"abstract":"This paper defines the concept of partitioned hypergraphs, and enumerates the number of these hypergraphs and discrete complete hypergraphs. A positive equivalence relation is defined on hypergraphs, this relation establishes a connection between hypergraphs and graphs. Moreover, we define the concept of (extended) derivable graph. Then a connection between hypergraphs and (extended) derivable graphs was investigated. Via the positive equivalence relation on hypergraphs, we show that some special trees are derivable graph and complete graphs are self derivable graphs.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"21-43"},"PeriodicalIF":0.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On derivable trees\",\"authors\":\"M. Hamidi, A. Saeid\",\"doi\":\"10.22108/TOC.2019.113737.1601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines the concept of partitioned hypergraphs, and enumerates the number of these hypergraphs and discrete complete hypergraphs. A positive equivalence relation is defined on hypergraphs, this relation establishes a connection between hypergraphs and graphs. Moreover, we define the concept of (extended) derivable graph. Then a connection between hypergraphs and (extended) derivable graphs was investigated. Via the positive equivalence relation on hypergraphs, we show that some special trees are derivable graph and complete graphs are self derivable graphs.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"21-43\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2019.113737.1601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.113737.1601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper defines the concept of partitioned hypergraphs, and enumerates the number of these hypergraphs and discrete complete hypergraphs. A positive equivalence relation is defined on hypergraphs, this relation establishes a connection between hypergraphs and graphs. Moreover, we define the concept of (extended) derivable graph. Then a connection between hypergraphs and (extended) derivable graphs was investigated. Via the positive equivalence relation on hypergraphs, we show that some special trees are derivable graph and complete graphs are self derivable graphs.