非胶体表面活性剂体系中原胶束的首次观察

IF 2.5 Q3 CHEMISTRY, PHYSICAL Colloids and Interfaces Pub Date : 2023-04-13 DOI:10.3390/colloids7020032
A. I. Rusanov, T. G. Movchan, E. V. Plotnikova
{"title":"非胶体表面活性剂体系中原胶束的首次观察","authors":"A. I. Rusanov, T. G. Movchan, E. V. Plotnikova","doi":"10.3390/colloids7020032","DOIUrl":null,"url":null,"abstract":"A spectrophotometric study of the system heptanol—Nile red (NR)—water was carried out, where, for the first time for such studies, a non-colloidal surfactant that does not form micelles was taken as a surfactant. The dependence of the solubility of NR on the concentration of heptanol in an aqueous solution was studied. The experiments were carried out at a given chemical potential of NR, which was provided by an excess of the solid phase of NR. The existence of a solubilization effect has been theoretically and experimentally established: An increase in the solubility of NR with an increase in the concentration of heptanol in solution. It was found that heptanol protomicelles with a solubilization core as an NR molecule are formed in such a system, so that in the absence of micelles, the protomicelles take on the entire solubilization load. From the experimental data, the concentration of protomicelle formation was calculated, which can also be taken as the concentration of NR monomerization in an aqueous solution, since the formation of protomicelles prevents the dye aggregation. Based on the results obtained, the following generalizations were made: (1) non-colloidal surfactants, although they do not give micelles, are capable of forming protomicelles; and (2) non-colloidal surfactants can serve as a practical means of dye monomerization.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Observation of Protomicelles in the System with a Non-Colloidal Surfactant\",\"authors\":\"A. I. Rusanov, T. G. Movchan, E. V. Plotnikova\",\"doi\":\"10.3390/colloids7020032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spectrophotometric study of the system heptanol—Nile red (NR)—water was carried out, where, for the first time for such studies, a non-colloidal surfactant that does not form micelles was taken as a surfactant. The dependence of the solubility of NR on the concentration of heptanol in an aqueous solution was studied. The experiments were carried out at a given chemical potential of NR, which was provided by an excess of the solid phase of NR. The existence of a solubilization effect has been theoretically and experimentally established: An increase in the solubility of NR with an increase in the concentration of heptanol in solution. It was found that heptanol protomicelles with a solubilization core as an NR molecule are formed in such a system, so that in the absence of micelles, the protomicelles take on the entire solubilization load. From the experimental data, the concentration of protomicelle formation was calculated, which can also be taken as the concentration of NR monomerization in an aqueous solution, since the formation of protomicelles prevents the dye aggregation. Based on the results obtained, the following generalizations were made: (1) non-colloidal surfactants, although they do not give micelles, are capable of forming protomicelles; and (2) non-colloidal surfactants can serve as a practical means of dye monomerization.\",\"PeriodicalId\":10433,\"journal\":{\"name\":\"Colloids and Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colloids7020032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colloids7020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对正醇-尼罗红(NR) -水体系进行了分光光度法研究,其中首次采用不形成胶束的非胶体表面活性剂作为表面活性剂。研究了NR在水溶液中溶解度与庚醇浓度的关系。实验是在给定的NR化学势下进行的,该化学势是由NR的固相过量提供的。理论和实验都证实了增溶效应的存在:NR的溶解度随着溶液中庚醇浓度的增加而增加。研究发现,在该体系中形成了以增溶核心为NR分子的庚醇原胶束,因此在没有胶束的情况下,原胶束承担了全部增溶负荷。根据实验数据,计算出原胶束形成的浓度,也可以作为NR在水溶液中单体化的浓度,因为原胶束的形成阻止了染料的聚集。根据所得结果,得出以下结论:(1)非胶体表面活性剂虽然不能形成胶束,但能够形成原胶束;(2)非胶体表面活性剂可作为染料单体化的实用手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Observation of Protomicelles in the System with a Non-Colloidal Surfactant
A spectrophotometric study of the system heptanol—Nile red (NR)—water was carried out, where, for the first time for such studies, a non-colloidal surfactant that does not form micelles was taken as a surfactant. The dependence of the solubility of NR on the concentration of heptanol in an aqueous solution was studied. The experiments were carried out at a given chemical potential of NR, which was provided by an excess of the solid phase of NR. The existence of a solubilization effect has been theoretically and experimentally established: An increase in the solubility of NR with an increase in the concentration of heptanol in solution. It was found that heptanol protomicelles with a solubilization core as an NR molecule are formed in such a system, so that in the absence of micelles, the protomicelles take on the entire solubilization load. From the experimental data, the concentration of protomicelle formation was calculated, which can also be taken as the concentration of NR monomerization in an aqueous solution, since the formation of protomicelles prevents the dye aggregation. Based on the results obtained, the following generalizations were made: (1) non-colloidal surfactants, although they do not give micelles, are capable of forming protomicelles; and (2) non-colloidal surfactants can serve as a practical means of dye monomerization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Interfaces
Colloids and Interfaces CHEMISTRY, PHYSICAL-
CiteScore
3.90
自引率
4.20%
发文量
64
审稿时长
10 weeks
期刊最新文献
Co-Encapsulation of Paclitaxel and Doxorubicin in Liposomes Layer by Layer Study of Interfacial Properties of Anionic–Nonionic Surfactants Based on Succinic Acid Derivatives via Molecular Dynamics Simulations and the IGMH Method Discontinuous Shear Thickening of Suspensions of Magnetic Particles in Relation to the Polymer Coating on Their Surfaces Flowable Electrodes from Colloidal Suspensions of Thin Multiwall Carbon Nanotubes A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1