{"title":"Said-Ball基的Gram矩阵的全正性和精确计算","authors":"E. Mainar, J. M. Pena, B. Rubio","doi":"10.1002/nla.2521","DOIUrl":null,"url":null,"abstract":"In this article, it is proved that Gram matrices of totally positive bases of the space of polynomials of a given degree on a compact interval are totally positive. Conditions to guarantee computations to high relative accuracy with those matrices are also obtained. Furthermore, a fast and accurate algorithm to compute the bidiagonal factorization of Gram matrices of the Said‐Ball bases is obtained and used to compute to high relative accuracy their singular values and inverses, as well as the solution of some linear systems associated with these matrices. Numerical examples are included.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total positivity and accurate computations with Gram matrices of Said‐Ball bases\",\"authors\":\"E. Mainar, J. M. Pena, B. Rubio\",\"doi\":\"10.1002/nla.2521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, it is proved that Gram matrices of totally positive bases of the space of polynomials of a given degree on a compact interval are totally positive. Conditions to guarantee computations to high relative accuracy with those matrices are also obtained. Furthermore, a fast and accurate algorithm to compute the bidiagonal factorization of Gram matrices of the Said‐Ball bases is obtained and used to compute to high relative accuracy their singular values and inverses, as well as the solution of some linear systems associated with these matrices. Numerical examples are included.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2521\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Total positivity and accurate computations with Gram matrices of Said‐Ball bases
In this article, it is proved that Gram matrices of totally positive bases of the space of polynomials of a given degree on a compact interval are totally positive. Conditions to guarantee computations to high relative accuracy with those matrices are also obtained. Furthermore, a fast and accurate algorithm to compute the bidiagonal factorization of Gram matrices of the Said‐Ball bases is obtained and used to compute to high relative accuracy their singular values and inverses, as well as the solution of some linear systems associated with these matrices. Numerical examples are included.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.