I. Campos, T. Chud, Hinayah Rojas de Oliveira, C. Baes, Á. Cánovas, F. Schenkel
{"title":"利用公开可用的气象站数据调查热应激对加拿大荷斯坦牛产奶性状的影响","authors":"I. Campos, T. Chud, Hinayah Rojas de Oliveira, C. Baes, Á. Cánovas, F. Schenkel","doi":"10.1139/cjas-2021-0088","DOIUrl":null,"url":null,"abstract":"Heat stress imposes a challenge to the dairy industry, even in northern latitudes. In this study, publicly available weather station data was combined with test-day records for milk, fat, and protein yields to identify the temperature-humidity index (THI) thresholds at which heat load starts affecting milk production traits in Canadian Holstein cows. Production loss per THI unit above the threshold for each trait was estimated. Test-day records from 2010-2019 from 166,749 cows raised in Ontario and from 221,214 cows raised in Quebec were analyzed. Annual economic losses due to heat stress were estimated from the average losses of fat and protein yields based on the annual average of 156 days with THI exceeding the calculated thresholds. Average thresholds for the daily maximum (THI_max) and daily average (THI_avg) THI estimated across lactations in both provinces were THI_max (THI_avg) 68 (64), 57 (50), and 60 (58) for milk, fat, and protein yield, respectively, indicating that milk components are more sensitive to heat stress. An economic loss of about $34.5 million per year was estimated. Our findings contribute to an initial investigation into the impact of heat stress on the Canadian dairy industry and provides a basis for genetic studies on heat tolerance.","PeriodicalId":9512,"journal":{"name":"Canadian Journal of Animal Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using publicly available weather station data to investigate the effects of heat stress on milk production traits in Canadian Holstein cattle\",\"authors\":\"I. Campos, T. Chud, Hinayah Rojas de Oliveira, C. Baes, Á. Cánovas, F. Schenkel\",\"doi\":\"10.1139/cjas-2021-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat stress imposes a challenge to the dairy industry, even in northern latitudes. In this study, publicly available weather station data was combined with test-day records for milk, fat, and protein yields to identify the temperature-humidity index (THI) thresholds at which heat load starts affecting milk production traits in Canadian Holstein cows. Production loss per THI unit above the threshold for each trait was estimated. Test-day records from 2010-2019 from 166,749 cows raised in Ontario and from 221,214 cows raised in Quebec were analyzed. Annual economic losses due to heat stress were estimated from the average losses of fat and protein yields based on the annual average of 156 days with THI exceeding the calculated thresholds. Average thresholds for the daily maximum (THI_max) and daily average (THI_avg) THI estimated across lactations in both provinces were THI_max (THI_avg) 68 (64), 57 (50), and 60 (58) for milk, fat, and protein yield, respectively, indicating that milk components are more sensitive to heat stress. An economic loss of about $34.5 million per year was estimated. Our findings contribute to an initial investigation into the impact of heat stress on the Canadian dairy industry and provides a basis for genetic studies on heat tolerance.\",\"PeriodicalId\":9512,\"journal\":{\"name\":\"Canadian Journal of Animal Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Animal Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjas-2021-0088\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjas-2021-0088","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Using publicly available weather station data to investigate the effects of heat stress on milk production traits in Canadian Holstein cattle
Heat stress imposes a challenge to the dairy industry, even in northern latitudes. In this study, publicly available weather station data was combined with test-day records for milk, fat, and protein yields to identify the temperature-humidity index (THI) thresholds at which heat load starts affecting milk production traits in Canadian Holstein cows. Production loss per THI unit above the threshold for each trait was estimated. Test-day records from 2010-2019 from 166,749 cows raised in Ontario and from 221,214 cows raised in Quebec were analyzed. Annual economic losses due to heat stress were estimated from the average losses of fat and protein yields based on the annual average of 156 days with THI exceeding the calculated thresholds. Average thresholds for the daily maximum (THI_max) and daily average (THI_avg) THI estimated across lactations in both provinces were THI_max (THI_avg) 68 (64), 57 (50), and 60 (58) for milk, fat, and protein yield, respectively, indicating that milk components are more sensitive to heat stress. An economic loss of about $34.5 million per year was estimated. Our findings contribute to an initial investigation into the impact of heat stress on the Canadian dairy industry and provides a basis for genetic studies on heat tolerance.
期刊介绍:
Published since 1957, this quarterly journal contains new research on all aspects of animal agriculture and animal products, including breeding and genetics; cellular and molecular biology; growth and development; meat science; modelling animal systems; physiology and endocrinology; ruminant nutrition; non-ruminant nutrition; and welfare, behaviour, and management. It also publishes reviews, letters to the editor, abstracts of technical papers presented at the annual meeting of the Canadian Society of Animal Science, and occasionally conference proceedings.