Amanda Prato, Rafael Carvalho da Silva, Cintia Akemi Oi, Izabel Cristina Casanova Turatti, Fabio Santos do Nascimento
{"title":"幼虫激素调节了蜂群建立黄蜂的生殖生理和生育线索的产生","authors":"Amanda Prato, Rafael Carvalho da Silva, Cintia Akemi Oi, Izabel Cristina Casanova Turatti, Fabio Santos do Nascimento","doi":"10.1007/s00049-022-00376-6","DOIUrl":null,"url":null,"abstract":"<div><p>Juvenile hormone (JH) has important functions that regulate insect life. In adult individuals, it induces gonadotropic and behavioral changes. Manipulating JH levels helps to understand how it influences insect physiology. The effects of JH on Epiponini swarm-founding wasps have shown contrasting results, affecting reproduction, chemical compound expression, behavior, and age polyethism. In this study, we investigated whether JH affects reproductive physiology and production of fertility cues in a swarm-founding wasp species <i>Polybia occidentalis</i> in an age-controlled experimental setup. We treated newly emerged females with methoprene (JH analogue) and precocene-I (JH inhibitor) to determine their effects on ovary activation and cuticular hydrocarbon (CHC) expression. Furthermore, we compared the chemical profiles of treated workers with those of queens. Our results show that methoprene and precocene-I affected the CHC production in <i>P. occidentalis</i>. Additionally, females treated with methoprene were chemically more similar to queens than precocene- and acetone-treated females. Methoprene affected ovarian status (increasing ovary activation). These results suggest that different levels of JH reflect changes in chemical and reproductive traits in <i>P. occidentalis</i> females. Furthermore, we point out the existence of fertility cues in this Epiponini wasp.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 4-5","pages":"171 - 180"},"PeriodicalIF":1.6000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis\",\"authors\":\"Amanda Prato, Rafael Carvalho da Silva, Cintia Akemi Oi, Izabel Cristina Casanova Turatti, Fabio Santos do Nascimento\",\"doi\":\"10.1007/s00049-022-00376-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Juvenile hormone (JH) has important functions that regulate insect life. In adult individuals, it induces gonadotropic and behavioral changes. Manipulating JH levels helps to understand how it influences insect physiology. The effects of JH on Epiponini swarm-founding wasps have shown contrasting results, affecting reproduction, chemical compound expression, behavior, and age polyethism. In this study, we investigated whether JH affects reproductive physiology and production of fertility cues in a swarm-founding wasp species <i>Polybia occidentalis</i> in an age-controlled experimental setup. We treated newly emerged females with methoprene (JH analogue) and precocene-I (JH inhibitor) to determine their effects on ovary activation and cuticular hydrocarbon (CHC) expression. Furthermore, we compared the chemical profiles of treated workers with those of queens. Our results show that methoprene and precocene-I affected the CHC production in <i>P. occidentalis</i>. Additionally, females treated with methoprene were chemically more similar to queens than precocene- and acetone-treated females. Methoprene affected ovarian status (increasing ovary activation). These results suggest that different levels of JH reflect changes in chemical and reproductive traits in <i>P. occidentalis</i> females. Furthermore, we point out the existence of fertility cues in this Epiponini wasp.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"32 4-5\",\"pages\":\"171 - 180\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-022-00376-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-022-00376-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
幼体激素(JH)在调节昆虫生命中具有重要作用。在成人中,它会引起促性腺激素和行为的改变。操纵JH水平有助于理解它是如何影响昆虫生理的。JH对建群胡蜂的影响有不同的结果,影响了繁殖、化合物表达、行为和年龄。在这项研究中,我们在年龄控制的实验设置中研究了JH是否影响了蜂群建立黄蜂物种Polybia occidentalis的生殖生理和生育线索的产生。我们用甲基戊二烯(JH类似物)和早熟素- i (JH抑制剂)处理新生雌虫,以测定它们对卵巢激活和表皮烃(CHC)表达的影响。此外,我们比较了处理过的工蜂和蚁后的化学特征。结果表明,甲氧丁二烯和早熟ⅰ影响了西花海参CHC的产生。此外,用甲基戊二烯处理的雌蜂在化学上比用早熟和丙酮处理的雌蜂更相似。甲基戊二烯影响卵巢状态(增加卵巢激活)。这些结果表明,不同水平的JH反映了西花蓟马雌性化学性状和生殖性状的变化。此外,我们还指出了该黄蜂的育性线索的存在。
Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis
Juvenile hormone (JH) has important functions that regulate insect life. In adult individuals, it induces gonadotropic and behavioral changes. Manipulating JH levels helps to understand how it influences insect physiology. The effects of JH on Epiponini swarm-founding wasps have shown contrasting results, affecting reproduction, chemical compound expression, behavior, and age polyethism. In this study, we investigated whether JH affects reproductive physiology and production of fertility cues in a swarm-founding wasp species Polybia occidentalis in an age-controlled experimental setup. We treated newly emerged females with methoprene (JH analogue) and precocene-I (JH inhibitor) to determine their effects on ovary activation and cuticular hydrocarbon (CHC) expression. Furthermore, we compared the chemical profiles of treated workers with those of queens. Our results show that methoprene and precocene-I affected the CHC production in P. occidentalis. Additionally, females treated with methoprene were chemically more similar to queens than precocene- and acetone-treated females. Methoprene affected ovarian status (increasing ovary activation). These results suggest that different levels of JH reflect changes in chemical and reproductive traits in P. occidentalis females. Furthermore, we point out the existence of fertility cues in this Epiponini wasp.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.