{"title":"不确定Metzler系统的虚拟执行器设计","authors":"D. Krokavec, A. Filasová","doi":"10.3389/fcteg.2021.758543","DOIUrl":null,"url":null,"abstract":"The paper presents the design conditions adequate in design of virtual actuators and utilizable by nominal static output control structures in fault-tolerant control for strictly Metzler systems. The positive stabilization with H ∞ norm performance is also addressed for virtual actuator design for strictly Metzler systems with interval uncertainty matrix representations of single actuator faults. Taking into account disturbance conditions and changes of values of variables after the virtual actuator activation, the design conditions are outlined in the terms of linear matrix inequalities. The approach provides a way to obtain acceptable dynamics of the closed loop system after virtual actuator activation.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Virtual Actuator Design for Uncertain Metzler Systems\",\"authors\":\"D. Krokavec, A. Filasová\",\"doi\":\"10.3389/fcteg.2021.758543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the design conditions adequate in design of virtual actuators and utilizable by nominal static output control structures in fault-tolerant control for strictly Metzler systems. The positive stabilization with H ∞ norm performance is also addressed for virtual actuator design for strictly Metzler systems with interval uncertainty matrix representations of single actuator faults. Taking into account disturbance conditions and changes of values of variables after the virtual actuator activation, the design conditions are outlined in the terms of linear matrix inequalities. The approach provides a way to obtain acceptable dynamics of the closed loop system after virtual actuator activation.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2021.758543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2021.758543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual Actuator Design for Uncertain Metzler Systems
The paper presents the design conditions adequate in design of virtual actuators and utilizable by nominal static output control structures in fault-tolerant control for strictly Metzler systems. The positive stabilization with H ∞ norm performance is also addressed for virtual actuator design for strictly Metzler systems with interval uncertainty matrix representations of single actuator faults. Taking into account disturbance conditions and changes of values of variables after the virtual actuator activation, the design conditions are outlined in the terms of linear matrix inequalities. The approach provides a way to obtain acceptable dynamics of the closed loop system after virtual actuator activation.