方解石胶结、白云石化和白云岩再结晶的岩石学和地球化学属性——以阿尔伯塔中西部密西西比系Pekisko组为例

Q3 Earth and Planetary Sciences Bullentin of Canadian Petroleum Geology Pub Date : 2017-06-01 DOI:10.2113/GSCPGBULL.65.2.235
J. Adam, I. Al-Aasm
{"title":"方解石胶结、白云石化和白云岩再结晶的岩石学和地球化学属性——以阿尔伯塔中西部密西西比系Pekisko组为例","authors":"J. Adam, I. Al-Aasm","doi":"10.2113/GSCPGBULL.65.2.235","DOIUrl":null,"url":null,"abstract":"Abstract Carbonate rocks of the Pekisko Formation make up an important reservoir in west-central Alberta, especially in fields along the Pekisko subcrop edge. They represent a transgressive-regressive carbonate platform sequence comprised of upward shallowing facies, which subsequently underwent extreme erosion leading to the development of karst topography. As a result, diagenetic alteration, mainly through dolomitization and karstification, has affected reservoir characterization for most of the carbonate facies. Several generations of calcite cementation and dolomite are the result of complex diagenetic changes. Calcite cements include isopachous fibrous, equant drusy mosaic, pendant/meniscus, blocky spar, syntaxial, fibrous, and bladed. These cements formed during early and late diagenetic events; pre- syn- and post exposure in shallow and deeper burial realms. There are five types of dolomite identified in the Pekisko Formation, based on petrographic and geochemical analyses: 1) pervasive, fine to coarse crystalline, subhedral to anhedral replacive dolomite;2) void-filling, coarse crystalline, euhedral dolomite cement;3) selective, fine to coarse crystalline, euhedral to anhedral dolomite; 4) dissolution seam-associated, fine crystalline, euhedral dolomite; and 5) saddle dolomite. Dolomite types 1), 3) and 4) are interpreted to have formed early in the diagenetic history and subsequently recrystallized, whereas void-filling, coarse crystalline, euhedral dolomite and saddle dolomite formed later in deeper burial setting. Petrographic evidence for recrystallization of dolomite types, excluding void-filling and saddle dolomite, includes: etching, displayed mainly on euhedral crystals; dissolved cores on many crystals of varying shapes; non-planar crystal boundaries, exclusively in pervasive dolomites; and coarsening crystal size, evident in both pervasive and selective dolomite types. Geochemical evidence, such as pronounced negative shift in oxygen isotopes (by up to 8‰ VPDB) and enrichment of radiogenic Sr isotopes further support this interpretation. There is a definite negative trend whereby wells closest to the subcrop edge have the most negative isotopic values and those farthest away show the least depletion. This trend in δ18O isotope values points to recrystallization of the earlier formed dolomites.","PeriodicalId":56325,"journal":{"name":"Bullentin of Canadian Petroleum Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSCPGBULL.65.2.235","citationCount":"14","resultStr":"{\"title\":\"Petrologic and geochemical attributes of calcite cementation, dolomitization and dolomite recrystallization: an example from the Mississippian Pekisko Formation, west-central Alberta\",\"authors\":\"J. Adam, I. Al-Aasm\",\"doi\":\"10.2113/GSCPGBULL.65.2.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Carbonate rocks of the Pekisko Formation make up an important reservoir in west-central Alberta, especially in fields along the Pekisko subcrop edge. They represent a transgressive-regressive carbonate platform sequence comprised of upward shallowing facies, which subsequently underwent extreme erosion leading to the development of karst topography. As a result, diagenetic alteration, mainly through dolomitization and karstification, has affected reservoir characterization for most of the carbonate facies. Several generations of calcite cementation and dolomite are the result of complex diagenetic changes. Calcite cements include isopachous fibrous, equant drusy mosaic, pendant/meniscus, blocky spar, syntaxial, fibrous, and bladed. These cements formed during early and late diagenetic events; pre- syn- and post exposure in shallow and deeper burial realms. There are five types of dolomite identified in the Pekisko Formation, based on petrographic and geochemical analyses: 1) pervasive, fine to coarse crystalline, subhedral to anhedral replacive dolomite;2) void-filling, coarse crystalline, euhedral dolomite cement;3) selective, fine to coarse crystalline, euhedral to anhedral dolomite; 4) dissolution seam-associated, fine crystalline, euhedral dolomite; and 5) saddle dolomite. Dolomite types 1), 3) and 4) are interpreted to have formed early in the diagenetic history and subsequently recrystallized, whereas void-filling, coarse crystalline, euhedral dolomite and saddle dolomite formed later in deeper burial setting. Petrographic evidence for recrystallization of dolomite types, excluding void-filling and saddle dolomite, includes: etching, displayed mainly on euhedral crystals; dissolved cores on many crystals of varying shapes; non-planar crystal boundaries, exclusively in pervasive dolomites; and coarsening crystal size, evident in both pervasive and selective dolomite types. Geochemical evidence, such as pronounced negative shift in oxygen isotopes (by up to 8‰ VPDB) and enrichment of radiogenic Sr isotopes further support this interpretation. There is a definite negative trend whereby wells closest to the subcrop edge have the most negative isotopic values and those farthest away show the least depletion. This trend in δ18O isotope values points to recrystallization of the earlier formed dolomites.\",\"PeriodicalId\":56325,\"journal\":{\"name\":\"Bullentin of Canadian Petroleum Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSCPGBULL.65.2.235\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bullentin of Canadian Petroleum Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSCPGBULL.65.2.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bullentin of Canadian Petroleum Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSCPGBULL.65.2.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 14

摘要

Pekisko组碳酸盐岩是阿尔伯达省中西部地区,尤其是Pekisko亚作物边缘地区的重要储层。它们代表了一个由向上浅水相组成的海侵-退退碳酸盐岩台地序列,随后经历了极端的侵蚀,导致了岩溶地形的发育。因此,以白云石化和岩溶作用为主的成岩蚀变作用影响了大部分碳酸盐岩相的储层特征。几代方解石胶结和白云岩是复杂成岩变化的结果。方解石胶结物包括等径纤维状、等量粗糙马赛克状、垂状/半月板状、块状晶石状、合成状、纤维状和叶片状。这些胶结物形成于早、晚成岩事件;浅埋层和深埋层的前后暴露。通过岩石学和地球化学分析,确定了Pekisko组白云岩的5种类型:1)普遍存在,细晶到粗晶,亚面形到斜面形替代白云岩;2)充填,粗晶,自面形胶结白云岩;3)选择性,细晶到粗晶,自面形到斜面形白云岩;4)溶缝伴生细晶自形白云岩;鞍状白云石。1)型、3)型和4)型白云岩形成于成岩历史早期,并在成岩过程中发生再结晶,而充填型、粗晶型、自形白云岩和鞍状白云岩则形成于较晚的深埋环境中。白云岩类型再结晶的岩石学证据包括:蚀刻,主要表现在自面体晶体上;许多不同形状的晶体上溶解的核;非平面晶界,只存在于普遍存在的白云岩中;晶粒尺寸变粗,这在普遍的和选择性的白云岩类型中都很明显。地球化学证据,如氧同位素明显的负移(高达8‰VPDB)和放射性成因Sr同位素的富集,进一步支持了这一解释。有一个明确的负趋势,即最靠近亚作物边缘的井负同位素值最多,而离亚作物边缘最远的井负同位素值最少。δ18O同位素值的变化趋势表明早期形成的白云岩发生了再结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrologic and geochemical attributes of calcite cementation, dolomitization and dolomite recrystallization: an example from the Mississippian Pekisko Formation, west-central Alberta
Abstract Carbonate rocks of the Pekisko Formation make up an important reservoir in west-central Alberta, especially in fields along the Pekisko subcrop edge. They represent a transgressive-regressive carbonate platform sequence comprised of upward shallowing facies, which subsequently underwent extreme erosion leading to the development of karst topography. As a result, diagenetic alteration, mainly through dolomitization and karstification, has affected reservoir characterization for most of the carbonate facies. Several generations of calcite cementation and dolomite are the result of complex diagenetic changes. Calcite cements include isopachous fibrous, equant drusy mosaic, pendant/meniscus, blocky spar, syntaxial, fibrous, and bladed. These cements formed during early and late diagenetic events; pre- syn- and post exposure in shallow and deeper burial realms. There are five types of dolomite identified in the Pekisko Formation, based on petrographic and geochemical analyses: 1) pervasive, fine to coarse crystalline, subhedral to anhedral replacive dolomite;2) void-filling, coarse crystalline, euhedral dolomite cement;3) selective, fine to coarse crystalline, euhedral to anhedral dolomite; 4) dissolution seam-associated, fine crystalline, euhedral dolomite; and 5) saddle dolomite. Dolomite types 1), 3) and 4) are interpreted to have formed early in the diagenetic history and subsequently recrystallized, whereas void-filling, coarse crystalline, euhedral dolomite and saddle dolomite formed later in deeper burial setting. Petrographic evidence for recrystallization of dolomite types, excluding void-filling and saddle dolomite, includes: etching, displayed mainly on euhedral crystals; dissolved cores on many crystals of varying shapes; non-planar crystal boundaries, exclusively in pervasive dolomites; and coarsening crystal size, evident in both pervasive and selective dolomite types. Geochemical evidence, such as pronounced negative shift in oxygen isotopes (by up to 8‰ VPDB) and enrichment of radiogenic Sr isotopes further support this interpretation. There is a definite negative trend whereby wells closest to the subcrop edge have the most negative isotopic values and those farthest away show the least depletion. This trend in δ18O isotope values points to recrystallization of the earlier formed dolomites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bullentin of Canadian Petroleum Geology
Bullentin of Canadian Petroleum Geology Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: The Bulletin of Canadian Petroleum Geology is a peer-reviewed scientific journal published four times a year. Founded in 1953, the BCPG aims to be the journal of record for papers dealing with all aspects of petroleum geology, broadly conceived, with a particularly (though not exclusively) Canadian focus. International submissions are encouraged, especially where a connection can be made to Canadian examples.
期刊最新文献
Lithostratigraphic revision and biostratigraphy of Upper Hauterivian–Barremian strata from the Kugmallit Trough, Mackenzie Delta, Northwest Territories Upper Elk Point subgroup paleogeography and evaporite distribution with implications for evaporite dissolution, karstification, and carbonate diagenesis in northeastern Alberta The type section of the Canol Formation (Devonian black shale) at Powell Creek: Critical assessment and correlation in the northern Cordillera, NWT, Canada Calibration of Middle to Upper Jurassic palynostratigraphy with Boreal ammonite zonations in the Canadian Arctic Stratigraphy and depositional environments of the Belly River Group (Campanian) in southwestern Saskatchewan, Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1