英国苏格兰米德兰山谷的低碳地热资源选择

IF 0.5 4区 地球科学 Q4 GEOLOGY Scottish Journal of Geology Pub Date : 2019-09-12 DOI:10.1144/sjg2019-007
Niklas Heinemann, Niklas Heinemann, Juan Alcalde, Gareth Johnson, Jennifer J. Roberts, A. McCay, M. G. Booth
{"title":"英国苏格兰米德兰山谷的低碳地热资源选择","authors":"Niklas Heinemann, Niklas Heinemann, Juan Alcalde, Gareth Johnson, Jennifer J. Roberts, A. McCay, M. G. Booth","doi":"10.1144/sjg2019-007","DOIUrl":null,"url":null,"abstract":"Scotland is committed to be a carbon-neutral society by 2040 and has achieved the important initial step of decarbonizing power production. However, more ambitious measures are required to fully decarbonize all of the electricity, transport and heating sectors. We explore the potential to use low-carbon GeoEnergy resources and bioenergy combined with Carbon Capture and Storage (BECCS) in the Midland Valley area to decarbonize the Scottish economy and society. The Midland Valley has a long history of geological resource extraction and, as a result, the geology of the region is well characterized. Geothermal energy and subsurface energy storage have the potential to be implemented. Some of them, such as gravity and heat storage, could re-use the redundant mining infrastructure to decrease investment costs. Hydrogen storage could be of particular interest as the Midland Valley offers the required caprock–reservoir assemblages. BECCS is also a promising option to reduce overall CO2 emissions by between 1.10 and 4.40 MtCO2 a−1. The Midland Valley has enough space to grow the necessary crops, but CO2 storage will most likely be implemented in North Sea saline aquifers. The studied aspects suggest that the Midland Valley represents a viable option in Scotland for the exploitation of the majority of low-carbon GeoEnergy resources. Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research","PeriodicalId":49556,"journal":{"name":"Scottish Journal of Geology","volume":"55 1","pages":"106 - 93"},"PeriodicalIF":0.5000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK\",\"authors\":\"Niklas Heinemann, Niklas Heinemann, Juan Alcalde, Gareth Johnson, Jennifer J. Roberts, A. McCay, M. G. Booth\",\"doi\":\"10.1144/sjg2019-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scotland is committed to be a carbon-neutral society by 2040 and has achieved the important initial step of decarbonizing power production. However, more ambitious measures are required to fully decarbonize all of the electricity, transport and heating sectors. We explore the potential to use low-carbon GeoEnergy resources and bioenergy combined with Carbon Capture and Storage (BECCS) in the Midland Valley area to decarbonize the Scottish economy and society. The Midland Valley has a long history of geological resource extraction and, as a result, the geology of the region is well characterized. Geothermal energy and subsurface energy storage have the potential to be implemented. Some of them, such as gravity and heat storage, could re-use the redundant mining infrastructure to decrease investment costs. Hydrogen storage could be of particular interest as the Midland Valley offers the required caprock–reservoir assemblages. BECCS is also a promising option to reduce overall CO2 emissions by between 1.10 and 4.40 MtCO2 a−1. The Midland Valley has enough space to grow the necessary crops, but CO2 storage will most likely be implemented in North Sea saline aquifers. The studied aspects suggest that the Midland Valley represents a viable option in Scotland for the exploitation of the majority of low-carbon GeoEnergy resources. Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research\",\"PeriodicalId\":49556,\"journal\":{\"name\":\"Scottish Journal of Geology\",\"volume\":\"55 1\",\"pages\":\"106 - 93\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scottish Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/sjg2019-007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scottish Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/sjg2019-007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

苏格兰致力于到2040年成为碳中和的社会,并已实现电力生产脱碳的重要初始步骤。然而,需要采取更雄心勃勃的措施,使所有电力、运输和供暖部门全面脱碳。我们探索在米德兰山谷地区使用低碳地热资源和生物能源与碳捕获和储存(BECCS)相结合的潜力,以实现苏格兰经济和社会的脱碳。米德兰山谷有着悠久的地质资源开采历史,因此,该地区的地质特征很好。地热能和地下储能具有实施的潜力。其中一些,如重力和储热,可以重复使用冗余的采矿基础设施,以降低投资成本。由于米德兰河谷提供了所需的盖层-储层组合,储氢可能特别令人感兴趣。BECCS也是一个很有前途的选择,可以将总二氧化碳排放量减少1.10至4.40 MtCO2 a−1.米德兰山谷有足够的空间种植必要的作物,但二氧化碳储存很可能会在北海含水层中实施。所研究的方面表明,米德兰山谷是苏格兰开发大部分低碳地热资源的可行选择。专题集:本文是“早期职业研究”的一部分,可访问:https://www.lyellcollection.org/cc/SJG-early-career-research
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK
Scotland is committed to be a carbon-neutral society by 2040 and has achieved the important initial step of decarbonizing power production. However, more ambitious measures are required to fully decarbonize all of the electricity, transport and heating sectors. We explore the potential to use low-carbon GeoEnergy resources and bioenergy combined with Carbon Capture and Storage (BECCS) in the Midland Valley area to decarbonize the Scottish economy and society. The Midland Valley has a long history of geological resource extraction and, as a result, the geology of the region is well characterized. Geothermal energy and subsurface energy storage have the potential to be implemented. Some of them, such as gravity and heat storage, could re-use the redundant mining infrastructure to decrease investment costs. Hydrogen storage could be of particular interest as the Midland Valley offers the required caprock–reservoir assemblages. BECCS is also a promising option to reduce overall CO2 emissions by between 1.10 and 4.40 MtCO2 a−1. The Midland Valley has enough space to grow the necessary crops, but CO2 storage will most likely be implemented in North Sea saline aquifers. The studied aspects suggest that the Midland Valley represents a viable option in Scotland for the exploitation of the majority of low-carbon GeoEnergy resources. Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scottish Journal of Geology
Scottish Journal of Geology 地学-地质学
CiteScore
1.70
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Although published only since 1965, the Scottish Journal of Geology has a long pedigree. It is the joint publication of the Geological Society of Glasgow and the Edinburgh Geological Society, which prior to 1965 published separate Transactions: from 1860 in the case of Glasgow and 1863 for Edinburgh. Traditionally, the Journal has acted as the focus for papers on all aspects of Scottish geology and its contiguous areas, including the surrounding seas. The publication policy has always been outward looking, with the Editors encouraging review papers and papers on broader aspects of the Earth sciences that cannot be discussed solely in terms of Scottish geology. The diverse geology of Scotland continues to provide an important natural laboratory for the study of earth sciences; many seminal studies in geology have been carried out on Scottish rocks, and over the years the results of much of this work had been published in the Journal and its predecessors. The Journal fully deserves its high reputation worldwide and intends to maintain its status in the front rank of publications in the Earth sciences.
期刊最新文献
Functional morphology of the stem in the Lower Palaeozoic crinoid Macrostylocrinus Hall from Scotland Dr John Grant Malcolmson and a reconciliation of the Middle Devonian Lethen Bar and Lethen House fish bearing nodule localities A revision of the ‘coelophysoid-grade’ theropod specimen from the Lower Jurassic of the Isle of Skye (Scotland) Arthropleura trackway ( Diplichnites cuithensis ) from the Carboniferous, Serpukhovikan, Limestone Coal Formation, Clackmannan Group, Linn Park, Glasgow Dipnoan diversity in the early Pennsylvanian of Scotland: new lungfish from the Lower Coal Measures of North Lanarkshire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1