{"title":"EPDM橡胶废料机械化学脱硫化工艺由批处理改为连续系统的升级改造","authors":"Larissa Gschwind, Carmen-Simona Jordan","doi":"10.3390/recycling8010008","DOIUrl":null,"url":null,"abstract":"The present work is a comparative study of the effects of mechanical shear, temperature, and concentration of a chemical agent on the devulcanization process of post-industrial ethylene propylene diene (EPDM) rubber waste. Devulcanization was carried out in a heating press (no shear), an internal mixer (low shear), and a co-rotating twin screw extruder (high shear) at temperatures ranging from 100 to 200 °C. The efficiency of pure dibenzamido diphenyl disulfide (DBD) and a commercial devulcanizing agent, Struktol A89®, containing DBD were studied. Based on the results, the devulcanization process was upscaled from 40 g per batch to a continuous process with a capacity of 270 g/h. The parameters were fine-tuned regarding flow rate, screw speed, and temperature. Blends of virgin rubber (VR) and 25, 50, and 75 wt% recyclates were compared with blends of VR and 25, 50, and 75 wt% of untreated RWP. The quality of the recyclate was determined by rheometer tests, SEM images, TGA, and mechanical properties. The best results were obtained with 2 wt% DBD in the extruder with a temperature profile of 120 to 80 °C, 50 rpm, and 4.5 g per minute (gpm). The tensile strength and strain at break of the recyclate already met the requirements of DIN EN 681-1:2006 for the production of sealing systems. The compression set and Shore A hardness were restored by mixing recyclate with 25 wt% VR.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Upscaling of a Mechanochemical Devulcanization Process for EPDM Rubber Waste from a Batch to a Continuous System\",\"authors\":\"Larissa Gschwind, Carmen-Simona Jordan\",\"doi\":\"10.3390/recycling8010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work is a comparative study of the effects of mechanical shear, temperature, and concentration of a chemical agent on the devulcanization process of post-industrial ethylene propylene diene (EPDM) rubber waste. Devulcanization was carried out in a heating press (no shear), an internal mixer (low shear), and a co-rotating twin screw extruder (high shear) at temperatures ranging from 100 to 200 °C. The efficiency of pure dibenzamido diphenyl disulfide (DBD) and a commercial devulcanizing agent, Struktol A89®, containing DBD were studied. Based on the results, the devulcanization process was upscaled from 40 g per batch to a continuous process with a capacity of 270 g/h. The parameters were fine-tuned regarding flow rate, screw speed, and temperature. Blends of virgin rubber (VR) and 25, 50, and 75 wt% recyclates were compared with blends of VR and 25, 50, and 75 wt% of untreated RWP. The quality of the recyclate was determined by rheometer tests, SEM images, TGA, and mechanical properties. The best results were obtained with 2 wt% DBD in the extruder with a temperature profile of 120 to 80 °C, 50 rpm, and 4.5 g per minute (gpm). The tensile strength and strain at break of the recyclate already met the requirements of DIN EN 681-1:2006 for the production of sealing systems. The compression set and Shore A hardness were restored by mixing recyclate with 25 wt% VR.\",\"PeriodicalId\":36729,\"journal\":{\"name\":\"Recycling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recycling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/recycling8010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling8010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
本工作比较研究了机械剪切、温度和化学试剂浓度对工业后三元乙丙橡胶(EPDM)废料脱硫过程的影响。在100至200°C的温度范围内,在热压机(无剪切)、内部混合器(低剪切)和同向旋转双螺杆挤出机(高剪切)中进行脱硫。研究了纯二苄脒基二苯二硫化物(DBD)和含有DBD的商业脱硫剂Struktol A89®的效率。基于这些结果,脱硫过程从每批40克升级为容量为270克/小时的连续过程。对流量、螺杆速度和温度等参数进行了微调。将原始橡胶(VR)和25、50和75wt%可回收物的共混物与VR和25、50wt%和75wt%未处理RWP的共混物进行比较。通过流变仪测试、SEM图像、TGA和机械性能确定回收物的质量。在挤出机中使用2 wt%的DBD获得最佳结果,温度分布为120至80°C、50 rpm和4.5克/分钟(gpm)。回收物的抗拉强度和断裂应变已经满足了DIN EN 681-1:2006对密封系统生产的要求。压缩永久变形和肖氏A硬度通过将回收物与25wt%VR混合而恢复。
Upscaling of a Mechanochemical Devulcanization Process for EPDM Rubber Waste from a Batch to a Continuous System
The present work is a comparative study of the effects of mechanical shear, temperature, and concentration of a chemical agent on the devulcanization process of post-industrial ethylene propylene diene (EPDM) rubber waste. Devulcanization was carried out in a heating press (no shear), an internal mixer (low shear), and a co-rotating twin screw extruder (high shear) at temperatures ranging from 100 to 200 °C. The efficiency of pure dibenzamido diphenyl disulfide (DBD) and a commercial devulcanizing agent, Struktol A89®, containing DBD were studied. Based on the results, the devulcanization process was upscaled from 40 g per batch to a continuous process with a capacity of 270 g/h. The parameters were fine-tuned regarding flow rate, screw speed, and temperature. Blends of virgin rubber (VR) and 25, 50, and 75 wt% recyclates were compared with blends of VR and 25, 50, and 75 wt% of untreated RWP. The quality of the recyclate was determined by rheometer tests, SEM images, TGA, and mechanical properties. The best results were obtained with 2 wt% DBD in the extruder with a temperature profile of 120 to 80 °C, 50 rpm, and 4.5 g per minute (gpm). The tensile strength and strain at break of the recyclate already met the requirements of DIN EN 681-1:2006 for the production of sealing systems. The compression set and Shore A hardness were restored by mixing recyclate with 25 wt% VR.