{"title":"关于分数和小数的推理,比例推理,以及澳大利亚和美国的数学成就","authors":"I. Resnick, N. Newcombe, Micah B. Goldwater","doi":"10.5964/jnc.8249","DOIUrl":null,"url":null,"abstract":"There is strong evidence from research conducted in the United States that fraction magnitude understanding supports mathematics achievement. Unfortunately, there has been little research that examines if this relation is present across educational contexts with different approaches to teaching fractions. The current study compared fourth and sixth grade students from two countries which differ in their approach to teaching fractions: Australia and the United States. We gathered data on fraction and decimal magnitude understanding, proportional reasoning, and a standardized mathematics achievement test on whole number computation. Across both countries, reasoning about rational magnitude (either fraction or decimal) was predictive of whole number computation, supporting the central role of rational number learning. However, the precise relation varied, indicating that cross-national differences in rational number instruction can influence the nature of the relation between understanding fraction and decimal magnitude and mathematics achievement. The relation between proportional reasoning and whole number computation was fully mediated by rational magnitude understanding, suggesting that a key mechanism for how reasoning about rational magnitude supports mathematics achievement: proportional reasoning supports the development of an accurate spatial representation of magnitude that can be flexibly and proportionally scaled, which in turn supports children’s mathematics learning. Together, these findings support using measurement models and spatial scaling strategies when teaching fractions and decimals.","PeriodicalId":36632,"journal":{"name":"Journal of Numerical Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reasoning about fraction and decimal magnitudes, reasoning proportionally, and mathematics achievement in Australia and the United States\",\"authors\":\"I. Resnick, N. Newcombe, Micah B. Goldwater\",\"doi\":\"10.5964/jnc.8249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is strong evidence from research conducted in the United States that fraction magnitude understanding supports mathematics achievement. Unfortunately, there has been little research that examines if this relation is present across educational contexts with different approaches to teaching fractions. The current study compared fourth and sixth grade students from two countries which differ in their approach to teaching fractions: Australia and the United States. We gathered data on fraction and decimal magnitude understanding, proportional reasoning, and a standardized mathematics achievement test on whole number computation. Across both countries, reasoning about rational magnitude (either fraction or decimal) was predictive of whole number computation, supporting the central role of rational number learning. However, the precise relation varied, indicating that cross-national differences in rational number instruction can influence the nature of the relation between understanding fraction and decimal magnitude and mathematics achievement. The relation between proportional reasoning and whole number computation was fully mediated by rational magnitude understanding, suggesting that a key mechanism for how reasoning about rational magnitude supports mathematics achievement: proportional reasoning supports the development of an accurate spatial representation of magnitude that can be flexibly and proportionally scaled, which in turn supports children’s mathematics learning. Together, these findings support using measurement models and spatial scaling strategies when teaching fractions and decimals.\",\"PeriodicalId\":36632,\"journal\":{\"name\":\"Journal of Numerical Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5964/jnc.8249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/jnc.8249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Reasoning about fraction and decimal magnitudes, reasoning proportionally, and mathematics achievement in Australia and the United States
There is strong evidence from research conducted in the United States that fraction magnitude understanding supports mathematics achievement. Unfortunately, there has been little research that examines if this relation is present across educational contexts with different approaches to teaching fractions. The current study compared fourth and sixth grade students from two countries which differ in their approach to teaching fractions: Australia and the United States. We gathered data on fraction and decimal magnitude understanding, proportional reasoning, and a standardized mathematics achievement test on whole number computation. Across both countries, reasoning about rational magnitude (either fraction or decimal) was predictive of whole number computation, supporting the central role of rational number learning. However, the precise relation varied, indicating that cross-national differences in rational number instruction can influence the nature of the relation between understanding fraction and decimal magnitude and mathematics achievement. The relation between proportional reasoning and whole number computation was fully mediated by rational magnitude understanding, suggesting that a key mechanism for how reasoning about rational magnitude supports mathematics achievement: proportional reasoning supports the development of an accurate spatial representation of magnitude that can be flexibly and proportionally scaled, which in turn supports children’s mathematics learning. Together, these findings support using measurement models and spatial scaling strategies when teaching fractions and decimals.