{"title":"具有模型不确定性的大流量下多类排队控制问题的渐近分析","authors":"A. Cohen","doi":"10.1287/stsy.2019.0034","DOIUrl":null,"url":null,"abstract":"We study a multiclass M/M/1 queueing control problem with finite buffers under heavy-traffic where the decision maker is uncertain about the rates of arrivals and service of the system and by scheduling and admission/rejection decisions acts to minimize a discounted cost that accounts for the uncertainty. The main result is the asymptotic optimality of a $c\\mu$-type of policy derived via underlying stochastic differential games studied in [16]. Under this policy, with high probability, rejections are not performed when the workload lies below some cut-off that depends on the ambiguity level. When the workload exceeds this cut-off, rejections are carried out and only from the buffer with the cheapest rejection cost weighted with the mean service rate in some reference model. The allocation part of the policy is the same for all the ambiguity levels. This is the first work to address a heavy-traffic queueing control problem with model uncertainty.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1287/stsy.2019.0034","citationCount":"8","resultStr":"{\"title\":\"Asymptotic Analysis of a Multiclass Queueing Control Problem Under Heavy Traffic with Model Uncertainty\",\"authors\":\"A. Cohen\",\"doi\":\"10.1287/stsy.2019.0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a multiclass M/M/1 queueing control problem with finite buffers under heavy-traffic where the decision maker is uncertain about the rates of arrivals and service of the system and by scheduling and admission/rejection decisions acts to minimize a discounted cost that accounts for the uncertainty. The main result is the asymptotic optimality of a $c\\\\mu$-type of policy derived via underlying stochastic differential games studied in [16]. Under this policy, with high probability, rejections are not performed when the workload lies below some cut-off that depends on the ambiguity level. When the workload exceeds this cut-off, rejections are carried out and only from the buffer with the cheapest rejection cost weighted with the mean service rate in some reference model. The allocation part of the policy is the same for all the ambiguity levels. This is the first work to address a heavy-traffic queueing control problem with model uncertainty.\",\"PeriodicalId\":36337,\"journal\":{\"name\":\"Stochastic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1287/stsy.2019.0034\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/stsy.2019.0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2019.0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Asymptotic Analysis of a Multiclass Queueing Control Problem Under Heavy Traffic with Model Uncertainty
We study a multiclass M/M/1 queueing control problem with finite buffers under heavy-traffic where the decision maker is uncertain about the rates of arrivals and service of the system and by scheduling and admission/rejection decisions acts to minimize a discounted cost that accounts for the uncertainty. The main result is the asymptotic optimality of a $c\mu$-type of policy derived via underlying stochastic differential games studied in [16]. Under this policy, with high probability, rejections are not performed when the workload lies below some cut-off that depends on the ambiguity level. When the workload exceeds this cut-off, rejections are carried out and only from the buffer with the cheapest rejection cost weighted with the mean service rate in some reference model. The allocation part of the policy is the same for all the ambiguity levels. This is the first work to address a heavy-traffic queueing control problem with model uncertainty.