关键计算:大语言数据分析的混合方法

Q3 Social Sciences Review of Communication Pub Date : 2023-01-02 DOI:10.1080/15358593.2022.2125821
Josephine Lukito, Meredith L. Pruden
{"title":"关键计算:大语言数据分析的混合方法","authors":"Josephine Lukito, Meredith L. Pruden","doi":"10.1080/15358593.2022.2125821","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this theoretical piece, we discuss the limitations of using purely computational techniques to study big language data produced by people online. Instead, we advocate for mixed-method approaches that are able to more critically evaluate and consider the individual and social impact of this data. We propose one approach that combines qualitative, traditional quantitative, and computational methods for the study of language and text. Such approaches leverage the speed and expediency of computational tools while also highlighting the value of qualitative methods in critically assessing the outcome of computational results. In addition to this, we highlight two considerations for communication scholars utilizing big data: (1) the need to consider more language variations and (2) the importance of self-reflexivity when conducting big language data research. We conclude with additional recommendations for researchers seeking to adopt this framework in the context of their own research.","PeriodicalId":53587,"journal":{"name":"Review of Communication","volume":"23 1","pages":"62 - 78"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Critical computation: mixed-methods approaches to big language data analysis\",\"authors\":\"Josephine Lukito, Meredith L. Pruden\",\"doi\":\"10.1080/15358593.2022.2125821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this theoretical piece, we discuss the limitations of using purely computational techniques to study big language data produced by people online. Instead, we advocate for mixed-method approaches that are able to more critically evaluate and consider the individual and social impact of this data. We propose one approach that combines qualitative, traditional quantitative, and computational methods for the study of language and text. Such approaches leverage the speed and expediency of computational tools while also highlighting the value of qualitative methods in critically assessing the outcome of computational results. In addition to this, we highlight two considerations for communication scholars utilizing big data: (1) the need to consider more language variations and (2) the importance of self-reflexivity when conducting big language data research. We conclude with additional recommendations for researchers seeking to adopt this framework in the context of their own research.\",\"PeriodicalId\":53587,\"journal\":{\"name\":\"Review of Communication\",\"volume\":\"23 1\",\"pages\":\"62 - 78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15358593.2022.2125821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15358593.2022.2125821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3

摘要

摘要在这篇理论文章中,我们讨论了使用纯计算技术来研究人们在线生成的大语言数据的局限性。相反,我们主张采用混合方法,能够更批判性地评估和考虑这些数据的个人和社会影响。我们提出了一种结合定性、传统定量和计算方法来研究语言和文本的方法。这种方法利用了计算工具的速度和方便性,同时也突出了定性方法在批判性评估计算结果方面的价值。除此之外,我们还强调了传播学者利用大数据的两个考虑因素:(1)需要考虑更多的语言变体;(2)在进行大语言数据研究时,自我反思的重要性。最后,我们向寻求在自己的研究中采用这一框架的研究人员提出了额外的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Critical computation: mixed-methods approaches to big language data analysis
ABSTRACT In this theoretical piece, we discuss the limitations of using purely computational techniques to study big language data produced by people online. Instead, we advocate for mixed-method approaches that are able to more critically evaluate and consider the individual and social impact of this data. We propose one approach that combines qualitative, traditional quantitative, and computational methods for the study of language and text. Such approaches leverage the speed and expediency of computational tools while also highlighting the value of qualitative methods in critically assessing the outcome of computational results. In addition to this, we highlight two considerations for communication scholars utilizing big data: (1) the need to consider more language variations and (2) the importance of self-reflexivity when conducting big language data research. We conclude with additional recommendations for researchers seeking to adopt this framework in the context of their own research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Communication
Review of Communication Social Sciences-Communication
CiteScore
1.70
自引率
0.00%
发文量
16
期刊最新文献
Student-to-student confirmation: a review and recommendations for research Theorizing about persuasive message repetition in communication research: a systematic review Students’ peer network quality: effects on academic resilience and intention to persist Marginalizing mortality: the fight against death as the communicative cultural condition Assessing the communicative experience of student orientation leaders: peer and professional
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1