Mengduo Jiang, Meng Shao, Xiao Yang, Linna He, Tao Peng, Tao Wang, Zeyu Ke, Zixin Wang, Shu Fang, Yuxin Mao, Xilin Ouyang, G. Zhao, Jinhua Zhou
{"title":"基于定量相位成像的红细胞形态自动分类","authors":"Mengduo Jiang, Meng Shao, Xiao Yang, Linna He, Tao Peng, Tao Wang, Zeyu Ke, Zixin Wang, Shu Fang, Yuxin Mao, Xilin Ouyang, G. Zhao, Jinhua Zhou","doi":"10.1155/2022/1240020","DOIUrl":null,"url":null,"abstract":"Classification of the morphology of red blood cells (RBCs) plays an extremely important role in evaluating the quality of long-term stored blood, as RBC storage lesions such as transformation of discocytes to echinocytes and then to spherocytes may cause adverse clinical effects. Most RBC segmentation and classification methods, limited by interference of staining procedures and poor details, are based on traditional bright field microscopy. In the present study, quantitative phase imaging (QPI) technology was combined with deep learning for automatic classification of RBC morphology. QPI can be used to observe unstained RBCs with high spatial resolution and phase information. In deep learning based on phase information, boundary curvature is used to reduce inadequate learning for preliminary screening of the three shapes of unstained RBCs. The model accuracy was 97.3% for the stacked sparse autoencoder plus Softmax classifier. Compared with the traditional convolutional neural network, the developed method showed a lower misclassification rate and less processing time, especially for RBCs with more discocytes. This method has potential applications in automatically evaluating the quality of long-term stored blood and real-time diagnosis of RBC-related diseases.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Classification of Red Blood Cell Morphology Based on Quantitative Phase Imaging\",\"authors\":\"Mengduo Jiang, Meng Shao, Xiao Yang, Linna He, Tao Peng, Tao Wang, Zeyu Ke, Zixin Wang, Shu Fang, Yuxin Mao, Xilin Ouyang, G. Zhao, Jinhua Zhou\",\"doi\":\"10.1155/2022/1240020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of the morphology of red blood cells (RBCs) plays an extremely important role in evaluating the quality of long-term stored blood, as RBC storage lesions such as transformation of discocytes to echinocytes and then to spherocytes may cause adverse clinical effects. Most RBC segmentation and classification methods, limited by interference of staining procedures and poor details, are based on traditional bright field microscopy. In the present study, quantitative phase imaging (QPI) technology was combined with deep learning for automatic classification of RBC morphology. QPI can be used to observe unstained RBCs with high spatial resolution and phase information. In deep learning based on phase information, boundary curvature is used to reduce inadequate learning for preliminary screening of the three shapes of unstained RBCs. The model accuracy was 97.3% for the stacked sparse autoencoder plus Softmax classifier. Compared with the traditional convolutional neural network, the developed method showed a lower misclassification rate and less processing time, especially for RBCs with more discocytes. This method has potential applications in automatically evaluating the quality of long-term stored blood and real-time diagnosis of RBC-related diseases.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1240020\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/1240020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Automatic Classification of Red Blood Cell Morphology Based on Quantitative Phase Imaging
Classification of the morphology of red blood cells (RBCs) plays an extremely important role in evaluating the quality of long-term stored blood, as RBC storage lesions such as transformation of discocytes to echinocytes and then to spherocytes may cause adverse clinical effects. Most RBC segmentation and classification methods, limited by interference of staining procedures and poor details, are based on traditional bright field microscopy. In the present study, quantitative phase imaging (QPI) technology was combined with deep learning for automatic classification of RBC morphology. QPI can be used to observe unstained RBCs with high spatial resolution and phase information. In deep learning based on phase information, boundary curvature is used to reduce inadequate learning for preliminary screening of the three shapes of unstained RBCs. The model accuracy was 97.3% for the stacked sparse autoencoder plus Softmax classifier. Compared with the traditional convolutional neural network, the developed method showed a lower misclassification rate and less processing time, especially for RBCs with more discocytes. This method has potential applications in automatically evaluating the quality of long-term stored blood and real-time diagnosis of RBC-related diseases.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.