农用地临界土地预测分类算法的比较分析

Deden Istiawan
{"title":"农用地临界土地预测分类算法的比较分析","authors":"Deden Istiawan","doi":"10.14710/jtsiskom.2020.13668","DOIUrl":null,"url":null,"abstract":"Currently, the identification of critical land, that has been physically, chemically, and biologically damaged, uses a geographic information system. However, it requires a high cost to get the high resolution of satellite images. In this study, a comparison framework is proposed to determine the performance of the classification algorithms, namely C.45, ID3, Random Forest, k-Nearest Neighbor, and Naive Bayes. This research aims to find out the best algorithm for the classification of critical land in agricultural cultivation areas. The results show that the highest accuracy Random Forest algorithm was 93.10 % in predicting critical land, and the naive Bayes has the lowest performance, with 89.32 % of accuracy in predicting critical land.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"270-275"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of classification algorithms for critical land prediction in agricultural cultivation areas\",\"authors\":\"Deden Istiawan\",\"doi\":\"10.14710/jtsiskom.2020.13668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the identification of critical land, that has been physically, chemically, and biologically damaged, uses a geographic information system. However, it requires a high cost to get the high resolution of satellite images. In this study, a comparison framework is proposed to determine the performance of the classification algorithms, namely C.45, ID3, Random Forest, k-Nearest Neighbor, and Naive Bayes. This research aims to find out the best algorithm for the classification of critical land in agricultural cultivation areas. The results show that the highest accuracy Random Forest algorithm was 93.10 % in predicting critical land, and the naive Bayes has the lowest performance, with 89.32 % of accuracy in predicting critical land.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"8 1\",\"pages\":\"270-275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.2020.13668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,对已受到物理、化学和生物破坏的关键土地的识别使用地理信息系统。然而,要获得高分辨率的卫星图像需要很高的成本。在本研究中,提出了一个比较框架来确定分类算法的性能,即C.45, ID3,随机森林,k-近邻和朴素贝叶斯。本研究的目的是找出农业种植区关键土地分类的最佳算法。结果表明,随机森林算法预测临界土地的准确率最高,为93.10%,朴素贝叶斯算法预测临界土地的准确率最低,为89.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of classification algorithms for critical land prediction in agricultural cultivation areas
Currently, the identification of critical land, that has been physically, chemically, and biologically damaged, uses a geographic information system. However, it requires a high cost to get the high resolution of satellite images. In this study, a comparison framework is proposed to determine the performance of the classification algorithms, namely C.45, ID3, Random Forest, k-Nearest Neighbor, and Naive Bayes. This research aims to find out the best algorithm for the classification of critical land in agricultural cultivation areas. The results show that the highest accuracy Random Forest algorithm was 93.10 % in predicting critical land, and the naive Bayes has the lowest performance, with 89.32 % of accuracy in predicting critical land.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1