下一代汽车系统设计:挑战与研究机遇

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-07-31 DOI:10.1115/1.4063067
Jitesh H. Panchal, Ziran Wang
{"title":"下一代汽车系统设计:挑战与研究机遇","authors":"Jitesh H. Panchal, Ziran Wang","doi":"10.1115/1.4063067","DOIUrl":null,"url":null,"abstract":"\n The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Next Generation Automotive Systems: Challenges and Research Opportunities\",\"authors\":\"Jitesh H. Panchal, Ziran Wang\",\"doi\":\"10.1115/1.4063067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063067\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在“CASE”大趋势的推动下,汽车行业正在经历一场巨大的变革:互联、自动化、共享和电动化。这些趋势正在从内部和外部影响着汽车的特性。从内部来看,从内燃机(ICE)到电动传动系统的转变导致了从硬件定义车辆到软件定义车辆(sdv)的转变,其中软件正日益成为汽车价值链中的主导资产。这些趋势带来了新的设计挑战,例如如何管理不同的设计配置,如何将软件和服务的设计与硬件分离,以及如何设计硬件以允许升级。从外部看,汽车不再是孤立的产品。相反,它们是拥有云连接的更大数字生态系统的一部分。车辆使用数据越来越多地与智能工厂联系在一起,这为敏捷产品开发和大规模定制功能创造了新的机会。人类驾驶员的角色也在随着自动驾驶功能水平的提高而发生变化。在本文中,作者讨论了汽车行业正在进行的变革及其对工程设计的影响。本文提出了下一代汽车应用的工程设计研究路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Next Generation Automotive Systems: Challenges and Research Opportunities
The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation A Novel Approach to Line Clipping Against a Rectangular Window Layered Security Guidance for Data Asset Management in Additive Manufacturing. Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1