{"title":"下一代汽车系统设计:挑战与研究机遇","authors":"Jitesh H. Panchal, Ziran Wang","doi":"10.1115/1.4063067","DOIUrl":null,"url":null,"abstract":"\n The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Next Generation Automotive Systems: Challenges and Research Opportunities\",\"authors\":\"Jitesh H. Panchal, Ziran Wang\",\"doi\":\"10.1115/1.4063067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063067\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Design of Next Generation Automotive Systems: Challenges and Research Opportunities
The automotive industry is undergoing a massive transformation, driven by the mega-trends of “CASE”: connected, automated, shared, and electric. These trends are affecting the nature of automobiles, both internally and externally. Internally, the transition from internal combustion engines (ICE) to electric drive-trains has resulted in a shift from hardware-defined vehicles to software-defined vehicles (SDVs), where software is increasingly becoming the dominant asset in the automotive value chain. These trends are leading to new design challenges such as how to manage different configurations of design, how to decouple the design of software and services from hardware, and how to design hardware to allow for upgrades. Externally, automobiles are no longer isolated products. Instead, they are part of the larger digital ecosystem with cloud connectivity. Vehicle usage data are increasingly connected with smart factories, which creates new opportunities for agile product development and mass customization of features. The role of the human driver is also changing with increasing levels of autonomy features. In this paper, the authors discuss the ongoing transformation in the automotive industry and its implications for engineering design. The paper presents a road map for engineering design research for next-generation automotive applications.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping