新型3D打印胫距跟骨三叶截面设计及自压缩效果的生物力学评价

Kin Weng Wong , Tai-Hua Yang , Shao-Fu Huang , Yi-Jun Liu , Chi-Sheng Chien , Chun-Li Lin
{"title":"新型3D打印胫距跟骨三叶截面设计及自压缩效果的生物力学评价","authors":"Kin Weng Wong ,&nbsp;Tai-Hua Yang ,&nbsp;Shao-Fu Huang ,&nbsp;Yi-Jun Liu ,&nbsp;Chi-Sheng Chien ,&nbsp;Chun-Li Lin","doi":"10.1016/j.cmpbup.2022.100072","DOIUrl":null,"url":null,"abstract":"<div><p>The current tibiotalocalcaneal (TTC) nails used in ankle arthrodesis surgery have shortcomings leading to unfavorable clinical failures. This study proposes a novel nail design and fabricated by metal 3D printing that can enhance the global implant stability through finite element (FE) analysis and fatigue testing. A novel titanium nail was designed with trilobular cross-sectional design for increasing anti-rotation stability. This nail has three leads with different, increasing pitches that increase the self-compression effect in the fusion sites. Between the leads, there are two porous diamond microstructure regions that act as a bone ingrowth scaffold. The nail was fabricated by metal 3D printing and implanted into artificial ankle joint to evaluate the self-compression effects. The nonlinear FE analysis was performed models to compare the anti-rotation stability between trilobular nail (Tri-nail) and the conventional circular nail. The static and fatigue four-point bending tests were done to understand the mechanical strength of the novel nail. The experiment of self-compression effect showed that the three lead design provides two stages of significant compression effect, with a pressurization rate as high as 40%. FE simulated results indicated that the Tri-nail group provides significant tangent displacement reduction as well as reduction in the surrounding bone stress value and the stress distribution is more even in the Tri-nail group. Four-point test found that the Tri-nail yielding strength is 12,957 ± 577 N, which is much higher than the approved FDA reference (1026 N). One million cycles using 8% of the yielding strength (1036 N) were accomplished without Tri-nail failure. The proposed novel metal 3D printing Tri-nail can provide enough mechanical strength and is mechanically stable with superior anti-rotation ability and excellent fusion site self-compression effect.</p></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666990022000234/pdfft?md5=7290bb3f66a1b0ca24111971f2f63c37&pid=1-s2.0-S2666990022000234-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomechanical evaluation of a novel 3D printing tibiotalocalcaneus nail with trilobular cross-sectional design and self-compression effect\",\"authors\":\"Kin Weng Wong ,&nbsp;Tai-Hua Yang ,&nbsp;Shao-Fu Huang ,&nbsp;Yi-Jun Liu ,&nbsp;Chi-Sheng Chien ,&nbsp;Chun-Li Lin\",\"doi\":\"10.1016/j.cmpbup.2022.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current tibiotalocalcaneal (TTC) nails used in ankle arthrodesis surgery have shortcomings leading to unfavorable clinical failures. This study proposes a novel nail design and fabricated by metal 3D printing that can enhance the global implant stability through finite element (FE) analysis and fatigue testing. A novel titanium nail was designed with trilobular cross-sectional design for increasing anti-rotation stability. This nail has three leads with different, increasing pitches that increase the self-compression effect in the fusion sites. Between the leads, there are two porous diamond microstructure regions that act as a bone ingrowth scaffold. The nail was fabricated by metal 3D printing and implanted into artificial ankle joint to evaluate the self-compression effects. The nonlinear FE analysis was performed models to compare the anti-rotation stability between trilobular nail (Tri-nail) and the conventional circular nail. The static and fatigue four-point bending tests were done to understand the mechanical strength of the novel nail. The experiment of self-compression effect showed that the three lead design provides two stages of significant compression effect, with a pressurization rate as high as 40%. FE simulated results indicated that the Tri-nail group provides significant tangent displacement reduction as well as reduction in the surrounding bone stress value and the stress distribution is more even in the Tri-nail group. Four-point test found that the Tri-nail yielding strength is 12,957 ± 577 N, which is much higher than the approved FDA reference (1026 N). One million cycles using 8% of the yielding strength (1036 N) were accomplished without Tri-nail failure. The proposed novel metal 3D printing Tri-nail can provide enough mechanical strength and is mechanically stable with superior anti-rotation ability and excellent fusion site self-compression effect.</p></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666990022000234/pdfft?md5=7290bb3f66a1b0ca24111971f2f63c37&pid=1-s2.0-S2666990022000234-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990022000234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990022000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前用于踝关节融合术的胫距趾骨(TTC)钉存在缺陷,导致临床失败。本研究提出了一种新型的金属3D打印钉设计和制造方法,通过有限元分析和疲劳测试可以提高种植体的整体稳定性。设计了一种新型的钛钉,采用三叶状截面设计,提高了钛钉的抗旋转稳定性。该钉有三个不同的导联,增加了融合部位的自压缩效果。在导线之间,有两个多孔的金刚石微结构区域,作为骨长入支架。采用金属3D打印技术制作甲钉,植入人工踝关节内,观察其自压缩效果。采用非线性有限元分析模型比较了三叶钉(Tri-nail)与常规圆形钉的抗旋转稳定性。通过静态和疲劳四点弯曲试验,了解了新型钉的力学强度。自压缩效果实验表明,三导联设计提供了两级显著的压缩效果,增压率高达40%。有限元模拟结果表明,三钉组具有明显的切线位移减少和周围骨应力值降低,应力分布更均匀。四点试验发现,Tri-nail的屈服强度为12,957±577 N,远高于FDA批准的参考值(1026 N)。使用8%的屈服强度(1036 N)完成了100万次循环,没有Tri-nail失效。所提出的新型金属3D打印三钉具有足够的机械强度和机械稳定性,具有优异的抗旋转能力和良好的融合部位自压缩效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomechanical evaluation of a novel 3D printing tibiotalocalcaneus nail with trilobular cross-sectional design and self-compression effect

The current tibiotalocalcaneal (TTC) nails used in ankle arthrodesis surgery have shortcomings leading to unfavorable clinical failures. This study proposes a novel nail design and fabricated by metal 3D printing that can enhance the global implant stability through finite element (FE) analysis and fatigue testing. A novel titanium nail was designed with trilobular cross-sectional design for increasing anti-rotation stability. This nail has three leads with different, increasing pitches that increase the self-compression effect in the fusion sites. Between the leads, there are two porous diamond microstructure regions that act as a bone ingrowth scaffold. The nail was fabricated by metal 3D printing and implanted into artificial ankle joint to evaluate the self-compression effects. The nonlinear FE analysis was performed models to compare the anti-rotation stability between trilobular nail (Tri-nail) and the conventional circular nail. The static and fatigue four-point bending tests were done to understand the mechanical strength of the novel nail. The experiment of self-compression effect showed that the three lead design provides two stages of significant compression effect, with a pressurization rate as high as 40%. FE simulated results indicated that the Tri-nail group provides significant tangent displacement reduction as well as reduction in the surrounding bone stress value and the stress distribution is more even in the Tri-nail group. Four-point test found that the Tri-nail yielding strength is 12,957 ± 577 N, which is much higher than the approved FDA reference (1026 N). One million cycles using 8% of the yielding strength (1036 N) were accomplished without Tri-nail failure. The proposed novel metal 3D printing Tri-nail can provide enough mechanical strength and is mechanically stable with superior anti-rotation ability and excellent fusion site self-compression effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Fostering digital health literacy to enhance trust and improve health outcomes Machine learning from real data: A mental health registry case study ResfEANet: ResNet-fused External Attention Network for Tuberculosis Diagnosis using Chest X-ray Images Role-playing recovery in social virtual worlds: Adult use of child avatars as PTSD therapy Comparative evaluation of low-cost 3D scanning devices for ear acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1