{"title":"紊流诱导输运发电机机制","authors":"C. Ryu","doi":"10.1088/2516-1067/ac1c9a","DOIUrl":null,"url":null,"abstract":"The transport dynamo mechanism, which describes the magnetic field generation by diffusion flow is reviewed. In this mechanism, the cross-field transport caused by the random motion of fluid breaks the frozen-flux approximation, and the resulting cross-field diffusion that can generate the magnetic field. Turbulence can play an important role in inducing such random motion. Compared to the conventional dynamo mechanism, this transport mechanism has several special features that the field generation can occur on a very slow time scale because the mechanism is mediated by diffusion and that this mechanism is practically meaningful only when there is density inhomogeneity. Turbulence can significantly enhance cross-field diffusion far beyond collisional transport. The physical meanings of the diffusion-generated magnetic fields are discussed in detail.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence-induced transport dynamo mechanism\",\"authors\":\"C. Ryu\",\"doi\":\"10.1088/2516-1067/ac1c9a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport dynamo mechanism, which describes the magnetic field generation by diffusion flow is reviewed. In this mechanism, the cross-field transport caused by the random motion of fluid breaks the frozen-flux approximation, and the resulting cross-field diffusion that can generate the magnetic field. Turbulence can play an important role in inducing such random motion. Compared to the conventional dynamo mechanism, this transport mechanism has several special features that the field generation can occur on a very slow time scale because the mechanism is mediated by diffusion and that this mechanism is practically meaningful only when there is density inhomogeneity. Turbulence can significantly enhance cross-field diffusion far beyond collisional transport. The physical meanings of the diffusion-generated magnetic fields are discussed in detail.\",\"PeriodicalId\":36295,\"journal\":{\"name\":\"Plasma Research Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1067/ac1c9a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ac1c9a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
The transport dynamo mechanism, which describes the magnetic field generation by diffusion flow is reviewed. In this mechanism, the cross-field transport caused by the random motion of fluid breaks the frozen-flux approximation, and the resulting cross-field diffusion that can generate the magnetic field. Turbulence can play an important role in inducing such random motion. Compared to the conventional dynamo mechanism, this transport mechanism has several special features that the field generation can occur on a very slow time scale because the mechanism is mediated by diffusion and that this mechanism is practically meaningful only when there is density inhomogeneity. Turbulence can significantly enhance cross-field diffusion far beyond collisional transport. The physical meanings of the diffusion-generated magnetic fields are discussed in detail.