{"title":"带有承重主干的高层建筑承重系统整体稳定性的非线性和线性分析","authors":"O. Inozemtseva, V. K. Inozemtsev","doi":"10.22363/1815-5235-2022-18-2-93-103","DOIUrl":null,"url":null,"abstract":"The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear and linear analysis of the overall stability of the load-bearing system of a high-rise building with a load-bearing trunk\",\"authors\":\"O. Inozemtseva, V. K. Inozemtsev\",\"doi\":\"10.22363/1815-5235-2022-18-2-93-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-2-93-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-2-93-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear and linear analysis of the overall stability of the load-bearing system of a high-rise building with a load-bearing trunk
The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.