带有承重主干的高层建筑承重系统整体稳定性的非线性和线性分析

O. Inozemtseva, V. K. Inozemtsev
{"title":"带有承重主干的高层建筑承重系统整体稳定性的非线性和线性分析","authors":"O. Inozemtseva, V. K. Inozemtsev","doi":"10.22363/1815-5235-2022-18-2-93-103","DOIUrl":null,"url":null,"abstract":"The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear and linear analysis of the overall stability of the load-bearing system of a high-rise building with a load-bearing trunk\",\"authors\":\"O. Inozemtseva, V. K. Inozemtsev\",\"doi\":\"10.22363/1815-5235-2022-18-2-93-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-2-93-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-2-93-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数值计算的结果可以也应该得到验证,但测试一个复杂而详细的计算模型是有问题的。这种可能性是由可用于定性分析的简单计算方案表示的简化模型提供的,并且所获得的数值结果是可预测的。这样的计算方案通常描述设计者所面临的各个计算任务。例如,美国钢结构学会(AISC)提供了线性稳定性分析。讨论了其中一个模型。所考虑的模型是基于悬臂齿条稳定性的线性分析,该悬臂齿条可以被视为高层建筑承重箱的简单模型。基于悬臂齿条稳定性的非线性和线性分析,对临界载荷进行了比较。结论是,所考虑的线性模型可以获得临界载荷的初步估计,以验证使用更复杂的高空物体承重箱平衡总体稳定性模型的计算机计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear and linear analysis of the overall stability of the load-bearing system of a high-rise building with a load-bearing trunk
The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
期刊最新文献
Optimal Duration of Observations During Seismic Inspection of Buildings Effect of Sinusoidal Fiber Waviness on Non-Linear Dynamic Performance of Laminated Composite Plates with Variable Fiber Spacing Deformation of Cylindrical Shell Made of 9X2 Steel Under Complex Loading Parameterization of Maxwell - Cremona Diagram for Determining Forces in Elements of a Scissors Truss Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1