石墨烯和二维层状材料中的热电输运

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2018-11-14 DOI:10.1080/15567265.2018.1520762
M. Markov, M. Zebarjadi
{"title":"石墨烯和二维层状材料中的热电输运","authors":"M. Markov, M. Zebarjadi","doi":"10.1080/15567265.2018.1520762","DOIUrl":null,"url":null,"abstract":"ABSTRACT In early 90s, Hicks and Dresselhaus proposed that low dimensional materials are advantages for thermoelectric applications due to the sharp features in their density-of-states, resulting in a high Seebeck coefficient and, potentially, in a high thermoelectric power factor. Two-dimensional (2D) materials are the latest class of low dimensional materials studied for thermoelectric applications. The experimental exfoliation of graphene, a single-layer of carbon atoms in 2004, triggered an avalanche of studies devoted to 2D materials in view of electronic, thermal, and optical applications. One can mix and match and stack 2D layers to form van der Waals hetero-structures. Such structures have extreme anisotropic transport properties. Both in-plane and cross-plane thermoelectric transport in these structures are of interest. In this short review article, we first review the progress achieved so far in the study of thermoelectric transport properties of graphene, the most widely studied 2D material, as a representative of interesting in-plane thermoelectric properties. Then, we turn our attention to the layered materials, in their cross-plane direction, highlighting their role as potential structures for solid-state thermionic power generators and coolers.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"117 - 127"},"PeriodicalIF":2.7000,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1520762","citationCount":"21","resultStr":"{\"title\":\"Thermoelectric transport in graphene and 2D layered materials\",\"authors\":\"M. Markov, M. Zebarjadi\",\"doi\":\"10.1080/15567265.2018.1520762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In early 90s, Hicks and Dresselhaus proposed that low dimensional materials are advantages for thermoelectric applications due to the sharp features in their density-of-states, resulting in a high Seebeck coefficient and, potentially, in a high thermoelectric power factor. Two-dimensional (2D) materials are the latest class of low dimensional materials studied for thermoelectric applications. The experimental exfoliation of graphene, a single-layer of carbon atoms in 2004, triggered an avalanche of studies devoted to 2D materials in view of electronic, thermal, and optical applications. One can mix and match and stack 2D layers to form van der Waals hetero-structures. Such structures have extreme anisotropic transport properties. Both in-plane and cross-plane thermoelectric transport in these structures are of interest. In this short review article, we first review the progress achieved so far in the study of thermoelectric transport properties of graphene, the most widely studied 2D material, as a representative of interesting in-plane thermoelectric properties. Then, we turn our attention to the layered materials, in their cross-plane direction, highlighting their role as potential structures for solid-state thermionic power generators and coolers.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"23 1\",\"pages\":\"117 - 127\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2018.1520762\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2018.1520762\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1520762","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 21

摘要

早在90年代初,Hicks和Dresselhaus就提出了低维材料在热电应用方面的优势,因为它们的态密度具有明显的特征,从而导致高塞贝克系数和潜在的高热电功率因数。二维(2D)材料是研究热电应用的最新一类低维材料。2004年,单层碳原子石墨烯的实验剥离引发了大量关于二维材料在电子、热学和光学应用方面的研究。人们可以混合、匹配和堆叠二维层来形成范德华异质结构。这种结构具有极端的各向异性输运性质。这些结构中的平面内和平面间热电输运都引起了人们的兴趣。在这篇简短的综述文章中,我们首先回顾了迄今为止在研究石墨烯热电输运性质方面取得的进展,石墨烯是研究最广泛的二维材料,是有趣的平面热电性质的代表。然后,我们将注意力转向层状材料,在它们的交叉平面方向上,强调它们作为固态热离子发电机和冷却器的潜在结构的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelectric transport in graphene and 2D layered materials
ABSTRACT In early 90s, Hicks and Dresselhaus proposed that low dimensional materials are advantages for thermoelectric applications due to the sharp features in their density-of-states, resulting in a high Seebeck coefficient and, potentially, in a high thermoelectric power factor. Two-dimensional (2D) materials are the latest class of low dimensional materials studied for thermoelectric applications. The experimental exfoliation of graphene, a single-layer of carbon atoms in 2004, triggered an avalanche of studies devoted to 2D materials in view of electronic, thermal, and optical applications. One can mix and match and stack 2D layers to form van der Waals hetero-structures. Such structures have extreme anisotropic transport properties. Both in-plane and cross-plane thermoelectric transport in these structures are of interest. In this short review article, we first review the progress achieved so far in the study of thermoelectric transport properties of graphene, the most widely studied 2D material, as a representative of interesting in-plane thermoelectric properties. Then, we turn our attention to the layered materials, in their cross-plane direction, highlighting their role as potential structures for solid-state thermionic power generators and coolers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1