Qanytah, Khaswar Syamsu, F. Fahma, G. Pari, Indrie Ambarsari
{"title":"活性炭纸作为乙烯吸附器","authors":"Qanytah, Khaswar Syamsu, F. Fahma, G. Pari, Indrie Ambarsari","doi":"10.1515/npprj-2022-0082","DOIUrl":null,"url":null,"abstract":"Abstract The use of activated carbon with KMnO4 activators incorporated on the paper matrix is carried out in this research. Three methods of activated carbon incorporation on paper are carried out to evaluate the paper’s physical parameters and adsorption ability to ethylene. The paper’s physical parameters include grammage, bursting strength, Ring Crush Test (RCT), moisture content, water absorption (Cobb60), and paper microstructures using SEM. Evaluation of the performance of activated carbon paper nanopores as ethylene adsorbent is conducted using GC. The treatment of activated carbon nanopores on non-wood paper causes grammage to increase, but RCT and paper bursting strength decrease. The incorporation of nanopore-activated carbon by the mixing method has produced papers with activated carbon particles spread evenly inside the pulp fibers of the paper. Activated carbon paper with the best adsorption capacity is bamboo+KMnO4&mixing with an adsorption capacity of 1,348 ppm and ethylene amount of 88.58 %. Concentration equilibrium is reached in the 25th minute. The non-linear pseudo-first-order absorbent kinetics model is an appropriate model to describe the equilibrium capacity of ethylene entrant (qe) by nanopore-activated carbon paper with the equation: qt = 1.35734 ( 1 − exp − 0.15312 t ) \\mathrm{qt}=1.35734\\hspace{0.1667em}(1-{\\exp ^{-0.15312\\hspace{0.1667em}\\mathrm{t}}}) , with R 2 = 0.9981 {\\mathrm{R}^{2}}=0.9981 .","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 1","pages":"121 - 130"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated carbon paper as ethylene adsorber\",\"authors\":\"Qanytah, Khaswar Syamsu, F. Fahma, G. Pari, Indrie Ambarsari\",\"doi\":\"10.1515/npprj-2022-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of activated carbon with KMnO4 activators incorporated on the paper matrix is carried out in this research. Three methods of activated carbon incorporation on paper are carried out to evaluate the paper’s physical parameters and adsorption ability to ethylene. The paper’s physical parameters include grammage, bursting strength, Ring Crush Test (RCT), moisture content, water absorption (Cobb60), and paper microstructures using SEM. Evaluation of the performance of activated carbon paper nanopores as ethylene adsorbent is conducted using GC. The treatment of activated carbon nanopores on non-wood paper causes grammage to increase, but RCT and paper bursting strength decrease. The incorporation of nanopore-activated carbon by the mixing method has produced papers with activated carbon particles spread evenly inside the pulp fibers of the paper. Activated carbon paper with the best adsorption capacity is bamboo+KMnO4&mixing with an adsorption capacity of 1,348 ppm and ethylene amount of 88.58 %. Concentration equilibrium is reached in the 25th minute. The non-linear pseudo-first-order absorbent kinetics model is an appropriate model to describe the equilibrium capacity of ethylene entrant (qe) by nanopore-activated carbon paper with the equation: qt = 1.35734 ( 1 − exp − 0.15312 t ) \\\\mathrm{qt}=1.35734\\\\hspace{0.1667em}(1-{\\\\exp ^{-0.15312\\\\hspace{0.1667em}\\\\mathrm{t}}}) , with R 2 = 0.9981 {\\\\mathrm{R}^{2}}=0.9981 .\",\"PeriodicalId\":19315,\"journal\":{\"name\":\"Nordic Pulp & Paper Research Journal\",\"volume\":\"38 1\",\"pages\":\"121 - 130\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Pulp & Paper Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/npprj-2022-0082\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0082","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Abstract The use of activated carbon with KMnO4 activators incorporated on the paper matrix is carried out in this research. Three methods of activated carbon incorporation on paper are carried out to evaluate the paper’s physical parameters and adsorption ability to ethylene. The paper’s physical parameters include grammage, bursting strength, Ring Crush Test (RCT), moisture content, water absorption (Cobb60), and paper microstructures using SEM. Evaluation of the performance of activated carbon paper nanopores as ethylene adsorbent is conducted using GC. The treatment of activated carbon nanopores on non-wood paper causes grammage to increase, but RCT and paper bursting strength decrease. The incorporation of nanopore-activated carbon by the mixing method has produced papers with activated carbon particles spread evenly inside the pulp fibers of the paper. Activated carbon paper with the best adsorption capacity is bamboo+KMnO4&mixing with an adsorption capacity of 1,348 ppm and ethylene amount of 88.58 %. Concentration equilibrium is reached in the 25th minute. The non-linear pseudo-first-order absorbent kinetics model is an appropriate model to describe the equilibrium capacity of ethylene entrant (qe) by nanopore-activated carbon paper with the equation: qt = 1.35734 ( 1 − exp − 0.15312 t ) \mathrm{qt}=1.35734\hspace{0.1667em}(1-{\exp ^{-0.15312\hspace{0.1667em}\mathrm{t}}}) , with R 2 = 0.9981 {\mathrm{R}^{2}}=0.9981 .
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.