用于神经启发计算应用的铁电材料

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-09-01 DOI:10.1016/j.fmre.2023.04.013
{"title":"用于神经启发计算应用的铁电材料","authors":"","doi":"10.1016/j.fmre.2023.04.013","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the “memory wall” problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal–oxide–semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 5","pages":"Pages 1272-1291"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric materials for neuroinspired computing applications\",\"authors\":\"\",\"doi\":\"10.1016/j.fmre.2023.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the “memory wall” problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal–oxide–semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"4 5\",\"pages\":\"Pages 1272-1291\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325823001310\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823001310","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能(AI)的大量应用引发了一场新的技术革命。这些应用包括面部识别、自动驾驶、智能机器人和图像修复等。然而,传统冯-诺依曼架构的数据处理和存储过程是离散的,这就导致了 "内存墙 "问题。因此,这种架构不符合人工智能对高效和可持续处理的要求。因此,探索新的计算架构和材料基础势在必行。受神经生物学系统的启发,内存内和传感器内计算技术为克服冯-诺依曼架构的固有局限性提供了一种新方法。神经形态计算的基础是由高密度、高效率非易失性存储器件组成的横条阵列。在众多候选存储器件中,具有非易失性极化态、低功耗和高耐用性的铁电存储器件有望成为神经形态计算的理想候选器件。有关这些器件的互补金属氧化物半导体(CMOS)兼容性的进一步研究正在进行中,并已取得了良好的成果。在此,我们首先介绍了铁电材料的发展及其极化反转机制,并详细介绍了铁电突触器件在人工神经网络中的应用。随后,我们介绍了基于铁电的内存计算和传感器计算的最新发展。最后,我们回顾了与 CMOS 工艺兼容的铪基铁电存储器件的最新研究成果,并展望了未来的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferroelectric materials for neuroinspired computing applications
In recent years, the emergence of numerous applications of artificial intelligence (AI) has sparked a new technological revolution. These applications include facial recognition, autonomous driving, intelligent robotics, and image restoration. However, the data processing and storage procedures in the conventional von Neumann architecture are discrete, which leads to the “memory wall” problem. As a result, such architecture is incompatible with AI requirements for efficient and sustainable processing. Exploring new computing architectures and material bases is therefore imperative. Inspired by neurobiological systems, in-memory and in-sensor computing techniques provide a new means of overcoming the limitations inherent in the von Neumann architecture. The basis of neural morphological computation is a crossbar array of high-density, high-efficiency non-volatile memory devices. Among the numerous candidate memory devices, ferroelectric memory devices with non-volatile polarization states, low power consumption and strong endurance are expected to be ideal candidates for neuromorphic computing. Further research on the complementary metal–oxide–semiconductor (CMOS) compatibility for these devices is underway and has yielded favorable results. Herein, we first introduce the development of ferroelectric materials as well as their mechanisms of polarization reversal and detail the applications of ferroelectric synaptic devices in artificial neural networks. Subsequently, we introduce the latest developments in ferroelectrics-based in-memory and in-sensor computing. Finally, we review recent works on hafnium-based ferroelectric memory devices with CMOS process compatibility and give a perspective for future developments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices Prediction of novel tetravalent metal pentazolate salts with anharmonic effect Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials Digitalized analog integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1