可证明时信道预防

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2020-08-31 DOI:10.1145/3421473.3421475
G. Heiser, Toby C. Murray, G. Klein
{"title":"可证明时信道预防","authors":"G. Heiser, Toby C. Murray, G. Klein","doi":"10.1145/3421473.3421475","DOIUrl":null,"url":null,"abstract":"We describe our ongoing research that aims to eliminate microarchitectural timing channels through time protection, which eliminates the root cause of these channels, competition for capacity-limited hardware resources. A proof-ofconcept implementation of time protection demonstrated the approach can be effective a nd l ow o verhead, b ut also that present hardware fails to support the approach in some aspects and that we need an improved hardXare-software contract to achieve real security. We have demonstrated that these mechanisms are not hard to provide, and are working on their inclusion in the RISC-V ISA. Assuming compliant hardware, we outline how we think we can then formally prove that timing channels are eliminated.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"54 1","pages":"1 - 7"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3421473.3421475","citationCount":"7","resultStr":"{\"title\":\"Towards Provable Timing-Channel Prevention\",\"authors\":\"G. Heiser, Toby C. Murray, G. Klein\",\"doi\":\"10.1145/3421473.3421475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe our ongoing research that aims to eliminate microarchitectural timing channels through time protection, which eliminates the root cause of these channels, competition for capacity-limited hardware resources. A proof-ofconcept implementation of time protection demonstrated the approach can be effective a nd l ow o verhead, b ut also that present hardware fails to support the approach in some aspects and that we need an improved hardXare-software contract to achieve real security. We have demonstrated that these mechanisms are not hard to provide, and are working on their inclusion in the RISC-V ISA. Assuming compliant hardware, we outline how we think we can then formally prove that timing channels are eliminated.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"54 1\",\"pages\":\"1 - 7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3421473.3421475\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421473.3421475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421473.3421475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

摘要

我们描述了我们正在进行的研究,旨在通过时间保护消除微架构定时通道,这消除了这些通道的根本原因,即对容量有限的硬件资源的竞争。时间保护的概念验证实现表明该方法可以有效且开销低,但也表明当前的硬件在某些方面无法支持该方法,并且我们需要改进硬件-软件合同以实现真正的安全性。我们已经证明,这些机制并不难提供,并且正在努力将其纳入RISC-V ISA。假设硬件兼容,我们概述了我们认为如何正式证明时序通道被消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Provable Timing-Channel Prevention
We describe our ongoing research that aims to eliminate microarchitectural timing channels through time protection, which eliminates the root cause of these channels, competition for capacity-limited hardware resources. A proof-ofconcept implementation of time protection demonstrated the approach can be effective a nd l ow o verhead, b ut also that present hardware fails to support the approach in some aspects and that we need an improved hardXare-software contract to achieve real security. We have demonstrated that these mechanisms are not hard to provide, and are working on their inclusion in the RISC-V ISA. Assuming compliant hardware, we outline how we think we can then formally prove that timing channels are eliminated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1